Category Archives: Fiber Optic Transceivers

What Is QSFP56 and QSFP56-DD Transceiver Module?

Optical transceiver is one of the most important elements in data centres. Currently, QSFP28 transceiver module is the leading product on the market that supports 40 and 100 Gigabit Ethernet application. However, the world is constantly changing and evolving, new applications such as 4K HD video, webcast, VR and cloud computing have driven a sharp growth of network traffic. Therefore, today, QSFP56 and QSFP56-DD are developed to provide 200G or 400G applications, in order to satisfy people’s higher transmission speed.

Introduction of QSFP

In order to have a good understanding of QSFP56 and QSFP56-DD, we’d better know what QSFP is first. QSFP means Quad Small Form-Factor Pluggable, which is a compact, hot-pluggable transceiver. It’s an industry format that is developed and supported by many network component vendors, and it’s widely used to connect network switch, computer, server, video and some other communication systems. QSFP, QSFP56 and QSFP56-DD transceivers share the same package form, but their transmitting rates are different. This has lead to some other differences such as functions and applications, which will be explained in the following parts.

What Is QSFP56 Transceiver Module?

QSFP56 optical transceiver is the solution for 200G applications. It’s a pluggable transceiver module that has the same size as QSFP. However, this 200G transceiver can provide the top data rate of 50Gb/s of each channel. In addition, products of the transceiver will be compatible with previous QSFP standards. Therefore, the data centres are able to reuse and easily refresh their systems designs and cost in an effective way. Communication specialists forecast that QSFP56 transceivers may accelerate the upgrade of the next generation network switches that the density of their front panel would be doubled, which will create more network throughput. QSFP56 will be the most competitive product due to its powerful processing capacity.

QSFP56

Figure 1: Example of QSFP56 Transceiver Connection

What Is QSFP56-DD Transceiver Module?

QSFP56-DD refers to a double-density QSFP optical transceiver that supports 200Gbps and 400Gbps Ethernet applications. It’s designed to employ eight lanes that operate up to 25Gb/s NRZ modulation or 50Gb/s PAM4 modulation. This means the new 400Gbps optical transceiver will increase the bandwidth and panel density by several times compared to the similarly sized QSFP transceivers. It’s based on the widely applied QSFP interconnection system, which is particularly suitable in data centres and HPC centres. In addition, this transceiver provides backward compatibility to lower-speed QSFP forms, so that when the technicians need to upgrade their networks to a higher speed, they could continue to use the other existing cabling infrastructure.

qsfp-dd-vs-qsfp

Figure 2: QSFP-DD vs QSFP

Conclusion

Traffic growth for data centres operators and service suppliers requires the adoption of 200G and 400G optical interfaces in the next generation of network devices. QSFP56 and QSFP56-DD transceiver modules are the best innovations to support customers with high speed and reliable connections. With these optical transceivers, technicians are able to achieve a breakthrough in network transmitting capability. We believe that the applications of QSFP56 and QSFP56-DD are the general trend in the future.

Related Article: Global Optical Transceiver Market: Striding to 200G and 400G

A Pair of HP SFP+: J9150A vs J9151A

Today, let’s turn to third-party transceiver modules rather than the original one which we have covered lots of topic about it. Third-party compatible optical module means the optical transceiver is offered by another manufacturer who can provide or produce the optics with the same specifications. For example, HPE J9150A compatible 10GBASE-SR SFP+ provided by FS.COM has the same specification with the original one produced by HP. The following part will mainly focus on the X132 10G SFP+ LC transceivers, especially J9150A vs J9151A.

J9150A: HP X132 10G SFP+ LC SR Transceiver

HP X132 10G SFP+ LC SR Transceiver is a 10-Gigabit transceiver in SFP+ form-factor. 10GBase-SR is one of the Ethernet specifications. HP X132 10G SFP+ LC SR transceiver complies with this standard specification, and the SR in this optical module model means short range. When it is integrated with multimode fibre, its transmission distance can reach up to 300 m. In addition, the wavelength of the 10G SFP+ SR optical module is 850 nm, which has the advantages of low cost, low power consumption, small size, and high density. In its name, HP is just a trademark of Hewlett-Packard Development Company. This kind of transceiver module is same with other normal 10G SFP+ SR transceivers in specification and function.

J9150A

J9151A: HP X132 10G SFP+ LC LR Transceiver

Same with HP X132 10G SFP+ LC SR transceiver, HP X132 10G SFP+ LC LR transceiver is also a 10-Gigabit transceiver in SFP+ form-factor, but it conforms to 10GBase-LR Ethernet specification. Oppositely, LR stands for the long range. The transceiver supports the 10-Gigabit LR standard, providing 10-Gigabit connectivity up to 10 km on single-mode fibre. Its maximum transmission distance is 10 km on a single-mode optical fibre with a wavelength of 1310nm. It can actually reach a maximum of 25km. Moreover, It also has the advantages of miniaturization, low power consumption, and long transmission distance.

J9151A

J9150A vs J9151A

SFP+ Module J9150A J9151A
Wavelength 850nm 1310nm
Cable Length 2m to 300m 2m to 10km
Fibre Type Multimode Single Mode
Connector Type LC LC
Transceiver Form Factor SFP+ SFP+

Wavelength means the distance between two crests of the transmission signal. The longer wavelength means a longer transmission distance. As wavelength and fibre type are both the determining factor of transmission distance, we can say the biggest difference between J9150A and J9151A is the transmission distance.

Conclusion

From the above, we can conclude that the content of J9150A vs J9151A is not falling on which one is better, instead, it mainly argues the optimised choice in varied conditions. Except for the prefix—HP, these two transceivers are similar to a lot of 10G SFP+ with an LC connector. Whereas, due to the name—HP, the transceivers can be trustworthy and chosen by many people. The fact that HP SFP+ transceivers are widely acknowledged by the public encourages more manufacturer to produce them. These 10 Gigabit single-mode SFP+ and 10 Gigabit multimode SFP+ provided by FS.COM are engineered to the highest quality standards and are 100% HP compatible. Next time, we may cover the two other types of X132 10G SFP+ LC transceivers, that is HP X132 10G SFP+ LC LRM transceiver(J9152A) and HP X132 10G SFP+ LC ER transceiver (J9153A). Follow us, if you are interested in it.

Related Article: Three Popular 10GBASE-SR SFP+ Modules Introduction

What’s the Difference: FET-10G vs SFP-10G-SR

You must be puzzled by the two different short reach optical transceivers for a long time: FET-10G and SFP-10G-SR. What’s their differences? Does the connection work if we connect Cisco Nexus switches with FET-10G on one end and SFP-10G-SR on the other end? With these questions in mind, I’d like to invite you to keep reading the article.

FET-10G vs SFP-10G-SR Difference

FET-10G vs. SFP-10G-SR are Cisco brand for building short network. FET is short for “Fabric Extender”. Just as its name implies, this module can only support fabric links from a Nexus 2000 to a Cisco parent switch. Fabric Extender transceiver can support link lengths up to 100m over OM3 or OM4 multimode fibre cable. SFP-10G-SR transceiver supports link lengths of 26m on standard fibre distributed data interface-grade multimode fibre cable. The link lengths can reach up to 300m over OM3 fibre cable and 400m over OM4 fibre patch leads. You can learn some small differences from the following table.

SFP+ Wavelength(nm) Cable Type Interface Modal Bandwidth(MHz km) Max Cable Distance (m)
FET-10G 850 MMF Duplex LC 500 (OM2)

2000 (OM3)

4700 (OM4)

25

100

100

SFP-10G-SR 850 MMF Duplex LC 160

200 (OM1)

400

500 (OM2)

2000 (OM3)

4700 (OM4)

26

33

66

82

300

400

Can We Connect FET-10G With SFP-10G-SR

In Cisco Nexus switch, do the transceivers have t ends in order for the connection to work? Does FET module have to be linked with another FET module? Now there is a FET-10G module in Cisco Nexus 2000 series fabric extender and SFP-10G-SR in a Nexus 5000 series switch. Can this connection work normally? Before making a judgement, let’s first compare the power of FET-10G and SFP-10G-SR.

SFP+ Module Transmit Power (dBm) Receive Power (dBm)
Max. Min. Max. Min.
FET-10G -1.3 -8 -1 -9.9
SFP-10G-SR -1.2 -7.3 -1.0 -9.9

From the above chart, transmit power and receiver power are different. And it has mentioned before that FET-10G vs. SFP-10G-SR support different network distance over the same fibre cable. Therefore, we can get a conclusion that FET-10G transceiver have to be connected with another FET-10G module. If we build a connection with SFP-10G-SR into the Nexus 5000 and FET-10G in Nexus 2000, it won’t work.

For better connection, when using FET-10G fabric extender transceiver, you should follow these rules:
1. FET-10G only supports fabric links, for instance, fabric links from a Nexus 2000 series to a Cisco parent switch.
2. Cisco fabric extender transceiver must be connected to another fabric extender transceiver, FET-10G to FET-10G.
3. FET-10G can be used for Nexus Cisco 2200 uplinks.
4. FET-10G can support fabric links on Cisco 5000, 6000, 7000 series switch.

Can We Replace FET-10G with SFP-10G-SR Modules?

FET-10G transceiver is designed to connect Cisco Nuplink ports (fabric interfaces) with the upstream parent Cisco Nexus switch. We already know that we can’t intermix FET-10G with SFP-10G-SR modules. How about plugging SFP-10G-SR transceivers into the fabric ports to connect Cisco Nexus switches? That is to say, can we replace FET-10G with SFP-10G-SR?

The answer is yes. However, it’s more expensive compared with original Cisco SFP-10G-SR transceiver. FET-10G is to provide an uplink to a Fabric Extender and save you money. If you already have them, then use them. If you making a purchasing decision, buy the FET-10G or third-party SFP-10G-SR.

FET-10G vs. SFP-10G-SR

Conclusion

From this article, you can find FET-10G vs SFP-1T-10G is specially designed for Cisco Nexus series switches. To make sure the right connection, bear in mind that use the sane transceivers on both sides, either FET or 10G-SR. You can replace FET-10G with SFP-10G-SR while you can’t do that in turn.

Related Article: Cisco SFP-10G-SR: All You Need to Know

DWDM Tunable SFP+ VS. DWDM Fixed Wavelength SFP+ Transceiver

Dense wavelength division multiplexing (DWDM) is one of the most important technologies to increase network transmission capacity. Early DWDM systems applied fixed wavelength DWDM SFP+ transceivers and performance is good. However, as the demand for great traffic capacity keeps growing, more optical transceivers of different wavelengths are needed, leading to high cost. So how to deal with that? DWDM Tunable SFP+ arises your attention.

Tunable-SFP+

What Is DWDM Tunable SFP+

Conventional DWDM SFP+ transceivers use fixed-wavelength lasers as light sources. It means that many optical transceivers are needed for the wavelength channels in a DWDM system. While DWDM tunable SFP+ is different from fixed wavelengths modules because it applies tunable laser, which can operate at any channel wavelength, means that only one kind of transceiver is needed. Tunable lasers are now widely used as light sources in DWDM systems. Tunable SFP+ modules are only available in DWDM since CWDM grid is too wide. DWDM Tunable SFP+ optics are for the C-Band 50GHz. About 88 different channels can be set with intervals of 0.4nm, which is the 50GHz band.

For better understanding, I’ll show you a DWDM tunable SFP+ module. This is a Cisco Compatible 10G DWDM C-band tunable SFP+ 50GHz Transceiver. It’s hot swappable, can support 10.3Gbps data rate up to the distance of 80km over single mode LC fibre cable. Support 1563.86nm-1528.77nm C-band tunable wavelengths.

cisco DWDM tunable SFP+

What you should note is that wavelengths of  DWDM tunable SFP+ can be tuned only when your Cisco/Juniper/Arista/etc switch supports. If your switch only supports common fixed-wavelength DWDM SFP+, you need external software to change tunable optics into certain wavelength before putting into use.

Why DWDM Tunable SFP+ Is Better Than Fixed Wavelength SFP+?

Fixed wavelength SFP+ are still in the market and not too many problems found in use. So you may feel puzzled about choosing DWDM tunable SFP+ or fixed wavelength SFP+ as tunable SFP+ is more expensive. The following will tell you why you need tunable optics.

First, save you cost. With the development of optical communication systems, the shortages of fixed-wavelength laser gradually revealed. Conventional DWDM SFP+ can lead high costs. The number of wavelengths in DWDM 50GHz has reached the hundreds. Then spare modules of each laser should be prepared for protection of the system because you don’t know which module will break down and it’s difficult to predict the number of stock in specific channels. Therefore you have to buy large quantity of DWDM SFP+ modules with fixed wavelengths. While the tunable optics are configured with different DWDM wavelengths in one module. You can select the right wavelength you need based on your optical fibre communication environment. DWDM Tunable SFP+ are typically used as “spare-optics” to save you cost.

Second, flexible network management. When running a DWDM network with lots of nodes, for instance, up to 80 different wavelengths, management could be a nightmare. You have to prepare couple of DWDM SFP+ optics of each wavelength and possibly in different locations. Field engineers may not access network nodes as quickly as you wish. Thus DWDM tunable optics would be a good choice. Tunable optics could be configured for a specific wavelength to support bandwidth changes as needed in the optical network.

Third, suitable for large network capacity. As the development of increasing network transport, 400G or 1T would be the trend. Then 400G and 1T transmission formats are expected to be bulky and not fit within 50GHz spacing. These future new data rate formats require that channel spacing is flexible, that your OTN system can adapt to new rates and can re-arrange channel spacing to find place for new rates in it. DWDM Tunable optics will double the number of channels supported in this transceiver module. Upgrading to 50GHz channel spacing doubles the capacity potential in Enterprise and Metro networks.

Choose DWDM Tunable SFP+ in the Long Run

DWDM Tunable SFP+ are high-performance optics which can be tuned to the appropriate wavelength in seconds. The ability to function on various wavelengths has set these optics apart from fixed-wavelength DWDM SFP+. DWDM Tunable SFP+ will become popular among DWDM systems due to their ease of spare use and flexibility. Tunable SFP+ would be a powerful and invaluable transmission tool in high-speed network. At present, many engineers are using fixed wavelengths SFP+ transceivers. Some may be stopped by the DWDM tunable SFP+ price. But in the long run, you are suggested to consider tunable SFP+.

Related Articles:

Wavelength Switching Solution: Tunable XFP Transceiver

Why Use Tunable DWDM SFP+ Transceivers?

Getting to Know About DWDM Tunable Transceiver

Transceiver Solutions for Cisco Catalyst 9300 Series Switch

This year, Cisco unveiled the Catalyst 9000 family, shaping the new era of intent-based networking. The Network. Intuitive. The Cisco Catalyst 9000 Series switches are the next generation of enterprise-class switches built for security, Internet of Things (IoT), mobility, and cloud. The Cisco Catalyst 9000 Series switches come in three main varieties: The Catalyst 9300, the Catalyst 9400 and the Catalyst 9500. Here, the post will give an emphasis on Cisco Catalyst 9400 series switches and transceiver solution for them.

Overview of Cisco Catalyst 9300

The Catalyst 9300 Series is the next generation of the industry’s most widely deployed stackable switching platform. Built for security, IoT, and the cloud, these network switches form the foundation for Cisco’s Software-Defined Access, the leading enterprise architecture. In addition, the Cisco Catalyst 9300-based models support a variety of uplink modules for both copper and fibre uplink support. These models add even more flexibility to the interface choices that you can make in a single Cisco Catalyst 9300 Switch or in a stack of Cisco Catalyst 9300 Switches.

cisco catalyst 9300

Supported Transceiver Modules for Cisco Catalyst 9300

The Cisco Catalyst 9300 Series Switches support optional network modules for uplink ports. All modules are supported across all 9300 platforms:

  • 4 x 1 Gigabit Ethernet network module
  • 4 x 1, 2.5, 5, or 10 Gigabit Ethernet network module
  • 8 x 10 Gigabit Ethernet network module
  • 2 x 40 Gigabit Ethernet network module

100G Solution

Model Number Transceiver Description Interface Max Cable Distance
CFP-100G-SR10 100GBASE-SR10 CFP form factor transceiver module for multi mode fibre, short wavelength over 10 lanes, in the 850-nm wavelength window MTP/MPO-24 Up to 100m on OM3/<150m on OM4
CFP-100G-LR4 100GBASE-LR4 CFP form factor transceiver module for SMF, 4 LAN-WDM lanes in the 1310-nm wavelength window LC duplex 10km
CFP-100G-ER4 100GBASE-ER4 CFP form factor transceiver module for SMF, 4 LAN-WDM lanes in the 1310-nm wavelength window LC duplex 40km
QSFP-100G-SR4-S 100GBASE-SR4 QSFP form factor transceiver module for multi mode fibre, short wavelength over 4 lanes, in the 850-nm wavelength window LC duplex 100m
QSFP-100G-CWDM4-S 100GBASE CWDM4 QSFP form factor Transceiver for single mode fibre, 4 CWDM-WDM lanes in the 12761-1331-nm wavelength window LC duplex 2km
QSFP-100G-PSM4-S 100GBASE PSM4 QSFP form factor transceiver module for single mode fibre, short wavelength over 4 lanes, in the 1195-1325-nm wavelength window MTP/MPO-12 500m
QSFP-100G-LR4-S 100GBASE-LR4 QSFP form factor transceiver module for SMF, 4 LAN-WDM lanes in the 1310-nm wavelength window LC duplex 10km

40G Solution

Model Number Transceiver Description Interface Max Cable Distance
QSFP-40G-SR4 40GBASE-SR4 QSFP+ transceiver module for MMF, 4-lanes, 850-nm wavelength MTP/MPO 150m on OM4
QSFP-40G-CSR4 40GBASE-CSR4 QSFP+ transceiver module for MMF, 4-lanes, 850-nm wavelength MTP/MPO 400m on OM4
QSFP-40G-SR4-S 40GBASE-SR4 QSFP+ transceiver module for MMF, 4-lanes, 850-nm wavelength MTP/MPO 150m on OM4
QSFP-40G-SR-BD 40G QSFP Bi-Directional transceiver module for duplex MMF LC duplex 150m on OM4/100m on OM3/30m on OM2
QSFP-40G-ER4 40GBASE-LR4 QSFP40G transceiver module for Single Mode Fibre, 4 CWDM lanes in 1310nm window Muxed inside module LC duplex 40km
QSFP-40GE-LR4 100GBASE-LR4 QSFP form factor transceiver module for SMF, 4 LAN-WDM lanes in the 1310-nm wavelength window LC duplex 10km
WSP-Q40GLR4L 40GBASE-LR4 QSFP40G transceiver module for Single Mode Fibre, 4 CWDM lanes in 1310nm window Muxed inside module LC duplex 2km

25G Solution

Model Number Transceiver Description Connector Type Cable Type
SFP-H25G-CU1M 25G Copper Cable 1-meter SFP28 to SFP28 Passive Copper Cable
SFP-H25G-CU2M 25G Copper Cable 2-meter SFP28 to SFP28 Passive Copper Cable
SFP-H25G-CU3M 25G Copper Cable 3-meter SFP28 to SFP28 Passive Copper Cable
SFP-H25G-CU5M 25G Copper Cable 2-mete SFP28 to SFP28 Passive Copper Cable
SFP-25G-SR-S 25GBASE-SR SFP+ transceiver module for MMF, 850-nm wavelength LC duplex MMF

10G Solution

Model Number Transceiver Description Interface Max Cable Distance
SFP-10G-SR 10GBASE-SR SFP+ transceiver module for MMF, 850-nm wavelength LC duplex 300m over OM3
SFP-10G-SR-S 10GBASE-SR SFP+ transceiver module for MMF, 850-nm wavelength LC duplex 300m over OM3
SFP-10G-SR-X 10GBASE-LRM SFP+ transceiver module for MMF and SMF, 1310-nm wavelength LC duplex 300m over OM3
SFP-10G-LRM 10GBASE-LRM SFP+ transceiver module for MMF and SMF, 1310-nm wavelength LC duplex 220m
SFP-10G-LR 10GBASE-LR SFP+ transceiver module for SMF, 1310-nm wavelength LC duplex 10km
SFP-10G-LR-S 10GBASE-LR SFP+ transceiver module for SMF, 1310-nm wavelength LC duplex 10km
SFP-10G-LR-X 10GBASE-LR SFP+ transceiver module for SMF, 1310-nm wavelength LC duplex 10km
SFP-10G-ER-S 10GBASE-ER SFP+ transceiver module for SMF, 1550-nm LC duplex 40km
SFP-10G-ZR 10GBASE-ZR SFP+ transceiver module for SMF, 1550-nm LC duplex 80km
SFP-10G-BX40D-I 10G SFP+ Bidirectional for 40km, downstream LC duplex 40km
SFP-10G-BX40U-I 10G SFP+ Bidirectional for 40km, upstream LC duplex 40km
DWDM-SFP10G-49.32 10GBASE-DWDM 1549.32 nm SFP+ (100-GHz ITU grid) LC duplex 40km
DWDM-SFP10G-60.61 10GBASE-DWDM 1560.61 nm SFP+ (100-GHz ITU grid) LC duplex 40km
CWDM-SFP10G-1470 CWDM 1470 nm SFP+ 10 Gigabit Ethernet Transceiver Module LC duplex 20km
CWDM-SFP10G-1490 CWDM 1490 nm SFP+ 10 Gigabit Ethernet Transceiver Module LC duplex 20km
XENPAK-10GB-ER 10GBASE-ER XENPAK transceiver module for SMF, 1550-nm wavelength SC duplex 40km
XENPAK-10GB-LR 10GBASE-LR XENPAK transceiver module for SMF, 1310-nm wavelength SC duplex 10km
X2-10GB-LR 10GBASE-LR X2 transceiver module for SMF, 1310-nm wavelength SC duplex 10km
X2-10GB-SR 10GBASE-SR X2 transceiver module for MMF, 850-nm wavelength SC duplex 300m over OM3 MMF
XFP-10GLR-OC192SR Cisco multirate XFP transceiver module for 10GBASE-LR Ethernet and OC-192/STM-64 short-reach (SR-1) Packet-over-SONET/SDH (POS) applications,SMF LC duplex 10km
XFP-10GER-OC192IR Cisco multirate XFP transceiver module for 10GBASE-ER Ethernet and OC-192/STM-64 intermediate-reach (IR-2) Packet-over-SONET/SDH (POS) applications, SMF LC duplex 40km

Conclusion

Digital disruption is changing how we think about our networks. Whether customers or employees, the “experience” has become a strategic imperative. The Cisco Catalyst 9300 Series fixed access switches are designed to help you change your network from a platform of connectivity to a platform of services. If you are in need of compatible optical transceivers for Catalyst 9300, give FS.COM a shot. FS.COM provides a wide range of supported optical transceivers for Cisco Catalyst 9300 series switch. Each one of them has been tested with assured 100% compatibility to them.

Related Article: Cisco Catalyst 3750 Series Switches SFP Port Connections

What Kind of SFP Fibre Cable Should I Choose?

Gigabit Ethernet has supplanted Fast Ethernet in wired local networks and becomes ubiquitous throughout the world, serving as one of the most prevalent enterprise communication standard. The Gigabit Ethernet standard supports a maximum data rate of 1 gigabit per second (Gbps)(1000 Mbps), 10 times faster than Fast Ethernet, yet is compatible with existing Ethernet. To link your switches and routers to a Gigabit Ethernet network, you need a Gigabit Ethernet transceiver module as a transmission medium. This article intends to introduce the most commonly used one—SFP transceivers. What kind of SFP fibre cable should I choose for my SFP?

SFP Fiber Cable

What Is SFP Transceiver?

SFP, short for small form-factor pluggable is a compact, hot-pluggable transceiver used for both telecommunication and data communications applications. SFP transceiver can be regarded as the upgrade version of GBIC module. Unlike GBIC with SC fibre optic interface, SFP module is with LC interface and the main body size of SFP is only about half of GBIC so that it can save more space. SFP interfaces a network device mother board (for a router, switch, media converter or similar devices) to a fibre optic or copper networking cable. It is designed to support SONET, Gigabit Ethernet, Fibre Channel, and other communications standards.

Types & Applications of SFP transceivers

SFP transceivers are available with various transmitter and receiver types, which facilitates users to select the appropriate optical transceiver for different optical reach and optical fibre type (single-mode fibre or multimode fibre) required by different link. SFP transceiver modules can be divided into several different categories:

Types Transmission Medium Wavelength Distance
1000BASE-T SFP Twisted-pair cabling / 100 m
1000BASE-SX SFP Multimode fibre 770-860 nm OM1-275 m/OM2-550 m
1000BASE-LX/LH SFP SMF & MMF 1270-1355 nm MMF-550 m/SMF-5 km
1000BASE-ZX SFP Single mode fibre 1550 nm 70 km
1000BASE-EX SFP Single mode fibre 1310 nm 40 km
1000BASE-BX10 SFP Single mode fibre 1480-1500 nm downstream, 1260-1,360 nm upstream 10 km
CWDM and DWDM SFP Single optical fibre various wavelengths various maximum distances

SFP transceivers are found in Ethernet switches, routers, firewalls and network interface cards. Storage interface cards, also called HBAs or Fibre Channel storage switches, also make use of these modules. Because of their low cost, low profile, and ability to provide a connection to different types of optical fibre, SFP transceiver provides such equipment with enhanced flexibility.

FS.COM Compatible SFP Transceivers for Popular Switches

FS.COM offers a full range of SFP transceivers compatible with major brands, such as Cisco, Juniper, Arista, Brocade, HPE, etc. All of these cost-effective compatible SFPs have been strictly tested to make sure 100% compatibility. The table below listed a small part of compatible SFPs supported on major branded switches.

Brand Switch Series Model Port Description
Cisco Catalyst 6500 Series WS-SUP720-3BXL 2 SFP Port
VS-S720-10G-3C 4 SFP Port
WS-X6724-SFP 24 SFP Port
Nexus 9000 Series N9K-C9396PX 48 SFP Port
IE3010 Series IE-3010-24TC 2 SFP Port
ASR 9000 Series Router A9K-MPA-20X1GE 20 SFP Port
Juniper EX 4200 Series EX4200-24T 2 SFP Port
EX4200-48T 4 SFP Port
EX4200-24T-DC 2 SFP Port
MX480 Router MX480 Router 4 SFP Port
SRX Series SRX210 1 SFP Port (Option)
QFX 5100 QFX5100-48S 48 SFP Port
Arista 7500 Series DCS-7504 48 SFP Port (Option)
DCS-7508 48 SFP Port (Option)
7050SX Series 7050SX-64 48 SFP Port
7100 Series DCS-7124S 24 SFP Port
Brocade VDX 6720 BR-VDX6720-16-R 16 SFP Port
BR-VDX6720-24-F 24 SFP Port
BR-VDX6720-40-F 40 SFP Port
SX Series SX-424F 24 SFP Port
SX-FI12GM-4-PREM 12 SFP Port
Brocade BI-RX-8 NI-MLX-1Gx20-SFP 20 SFP Port
HPE ProCurve 5400zl Series J8697A 2 SFP Port
J9548A 144 SFP Port
FlexFabric 5800 Series JC101B 4 SFP Port
JG225B 6 SFP Port
5400R zl2 Series J9584A 24 SFP Port
StorageWorks edge 2/12 348406-B21 12 SFP Port

FS.COM SFP Fibre Cable Solutions

FS.COM offers comprehensive SFP fibre cables for common and special types of SFPs, including singlemode & multimode, simplex & duplex, UPC & APC, lengths from 1 meter to 30 meters in large stocks. We also provides Cat 5e patch cables for 10/100/1000BASE-T SFPs.

Fiber Mode Connector Jacket
9/125 SMF LC Duplex PVC/LSZH/OFNP
9/125 SMF LC Simplex PVC/LSZH
9/125 SMF SC Simplex PVC/LSZH
50/125 OM2 LC Duplex PVC/LSZH
62.5/125 OM1 LC Duplex PVC
Cat5e Patch Cables Max Distance Data Rate
Unshielded (UTP) 100m 1000Mbps
Shielded (FTP) 100m 1000Mbps

Summary

This article offers switch and SFP fiber cable solution for SFP transceivers. Besides the major brands mentioned above, we also provide SFP transceivers compatible with other brands, such as Dell, Extreme, H3C, Huawei, Intel, IBM, Netgear, Ciena, D-Link, Avago, and so on. As to special requirements, please contact Sales@fs.com for suggestion.

Related Article:What Is SFP Port of Gigabit Switch?

25GbE–A New Trend For Future Ethernet Network

Nowadays, the requirement for bandwidth in cloud data centres is increasing strikingly. To meet the demand for higher bandwidth, networking and the Ethernet industry are moving toward a new direction. Discussions previously focusing on 10GbE and 40GbE are now shifting onto 25GbE. It seems that 25GbE is more preferred and accepted by end users, which poses a threat to 10GbE and 40GbE. Why does it happen? This post will lead you to interpret 25GbE in an all-sided perspective.

25GbE–A New Trend for Future Ethernet Network

25GbE—An Emerging Standard

25GbE is a standard developed by IEEE 802.3 Task Force P802.3by in July 2014, used for 25G Ethernet servers and 25GbE switch connectivity in a data centre environment. The single lane design of 25GbE gives it a low cost per bit, which enables cloud providers and large-scale data centre operators to deploy fewer switches and cables to meet the needs while still scaling their network infrastructure. The following table provides a summary of key upcoming IEEE standard interfaces that specify 25GbE.

25GbE–A New Trend for Future Ethernet Network

Figure 1: IEEE 802.3 standard Interfaces that specify 25GbE

Cloud Will Drive to QSFP28 and SFP28

The 25GbE physical interface specification supports two main form factors—SFP28 and QSFP28.
SFP28 is used for a single 25GbE port. The SFP28-25G-SR-S is an 850nm VCSEL 25GbE transceiver which is designed to transmit and receive optical data over 50/125µm multimode fibre (MMF) and support up to 70m on OM3 MMF and 100m on OM4 MMF.

The QSFP28 transceiver and interconnect cable is a high-density, high-speed product solution designed for applications in the telecommunication. The interconnect offers four channels of high-speed signals with data rates ranging from 25 Gbps up to potentially 40 Gbps, and will meet 100 Gbps Ethernet (4×25 Gbps) and 100 Gbps 4X InfiniBand EDR requirements.

25GbE switch

Figure 2: FS.COM optical transceivers for 25GbE solution

Why Choose 25GbE

While 10GbE is fine for many existing deployments, it cannot efficiently deliver the bandwidth required by next-generation cloud and web-scale environments. And 40GbE isn’t cost-effective or power-efficient in ToR switching for cloud providers. Thus, 25GbE was designed to break through the dilemma.

Number of SerDes Lanes

SerDes is an integrated circuit or transceiver used in high-speed communications for converting serial data to parallel interfaces and vice versa. The transmitter section is a serial-to-parallel converter, and the receiver section is opposite. Currently, the rate of SerDes is 25 Gbps. That is to say, we can only use one SerDes lane at the speed of 25 Gbps to connect from 25GbE card to the other end of 25GbE card. In contrast, 40GbE needs four 10GbE SerDes lanes to achieve connection. As a result, the communication between two 40GbE cards requires as many as four pairs of fibre. Furthermore, 25 Gbps Ethernet provides an easy upgrade path to 50GbE and 100GbE networks, which utilise multiple 25GbE lanes.

Numbers of lanes needed in different Gigabit Ethernet

Figure 3: Numbers of lanes needed in different Gigabit Ethernet

Utilisation of PCIe Lanes

At present, the mainstream Intel Xeon CPU only provides 40 lanes of PCIe 3.0. The lane bandwidth of a single PCIe 3.0 is about 8 Gbps. These PCle lanes are used for many connections. Therefore, it is necessary to consider the utilisation of limited PCIe lanes by the network cards. Single 40GbE NIC needs at least one PCIe 3.0 x8 slot, so two 40GbE cards need to occupy two PCIe 3.0 x8 lanes. Even if the two 40GbE ports can run full of data at the same time, the actual lane bandwidth utilisation is only: (40G+40G) / 8G*16= 62.5%. On the contrary, 25GbE card only needs one PCIe 3.0 x8 lane, and then the utilisation efficiency is 25G*2 / (8G*8) = 78%. Apparently, 25GbE is significantly more efficient and more flexible than 40GbE in terms of the use of PCIe lanes.

10GbE vs 25GbE vs 40GbE

25GbE enables resellers and their customers to provide 2.5X the performance of 10GbE, making it a cost-effective upgrade to the 10GbE infrastructure. Since 25GbE is delivered across a single lane, it provides greater 25GbE switch port density and network scalability compared to 40GbE, which is actually four 10GbE lanes. Thus, it costs less, requires lower power consumption and provides higher bandwidth. What’s more, 25GbE can run over existing fibre optic cable plant designed for 10, 50 or 100GbE and also 40GbE by changing the transceivers.

Bandwidth comparison for 25GbE and other Ethernet speeds

Figure 4: Bandwidth comparison for 25GbE and other Ethernet speeds

Summary

No matter the market research or the attitude of users, 25GbE seems to be the preferred option down the road. Actually, coming back to reality, there will be a significant increase in 100GbE and 25GbE port density in the next few years. If you need any optics and cabling solution for your 25GbE infrastructure, feel free to contact sales@fs.com.

Related Article: How to Use 25G Switch for Switch-to-Server Connection

How to Get 40/100G Connectivity in Your Data Centre?

The demand for network growth is rapidly increasing, which is due to the massive amount of storage needed for high bandwidth applications. Large growth hence spurs the requirements for expansion and scalability in the data centre. Cabling infrastructures must evolve to provide reliability, manageability and flexibility. Obviously, the conservative 2-fibre transmission is not enough to catch up with the speed. And 12 or 24-fibre 40/100G Ethernet migration is quickly becoming a matter of survival. This article offers cabling solutions for cost-effective and simplified migration for 40/100G within the data centre.

Introduction to 40/100G Ethernet

40/100G Ethernet employ parallel optics. Parallel optics transmission, compared to traditional serial transmission, uses an optic module interface where data is simultaneously transmitted and received over multiple fibres. For the 40GE transmission, 4 x 10G on 4 fibres per direction and 10 x 10G on 10 fibres per direction for the 100GE. Which ushers the need for the high quality and low loss multimode MTP connectors and assemblies.

How to Get 40G Connectivity?
1). 10G to 40G Connection

Migration from 10G to 40G system utilises 40G MTP/MPO breakout cables, with an MTP/MPO connector on one end and four duplex LC connectors on the other end. The IEEE ratified the 40GBASE-SR4 (MPO/MTP interface) standard that uses 4 lanes at 10G SFP+ (LC interface) per lane over multimode fibre for a total of 8 fibres.

Parallel optics 40GBASE-SR4 uses 8 out of 12 MTP/MPO interfaces fibres transmitting 4 duplex channels (4 for transmit and 4 receive), as shown in the following picture. QSFP+ to SFP+ breakout cable is 8-fibres MTP to LC breakout assembly.

10G-40G migration solution 1

2). 40G to 40G Connection

As for data transmission between two 40G switches, 40G QSFP+ SR4 transceivers are generally adopted, transmitting signals over four duplex 10G lanes (4 transmit and 4 receive). A 12-fibreMTP/MPO trunk are involved, with 8 out of 12 fibres used to achieve 4 duplex signals transmission. And MTP/MPO adapter panels can be installed easily to make the next adaptation, as the following picture indicates.

10G-40G migration solution 2

How to Get 100G Connectivity?
1). 10G to 100G Connection

Migrating from 10G to 100G still utilises 100G MTP/MPO breakout cable, the IEEE ratified the 100GBASE-SR10 (MTP/MPO interface) standard that uses 10 lanes at 10G SFP+ per lane over multiple fibre for a total of 20 fibres. Parallel optics 100GBASE-SR10 uses 20 out of 24 MTP/MPO interface fibres transmitting 10 duplex channels.

10G-100G migration solution 1

2). 100G to 100G Connection

100G connectivity can be achieved through ten 10G SFP+ transceivers. SFP+ transceiver operates on legacy duplex 10G lanes, thus taking full advantage of the existing network infrastructure. With a 24-fibre MTP/MPO trunk cable, of which 20 out of the 24 fibres are used to make duplex 10×10G transmission.

10G-100G migration solution 2

We can also get 100G to 100G connectivity via MTP/MPO assemblies: simply use the 24-fibre MTP/MPO interface trunk cable or 2×12-fibre MTP/MPO interface trunk cable. As shown in the following picture.

40G-100G migration solution 1

Conclusion

With the rapid increase in bandwidth consumption, the migration from 10G to 40/100G is inevitable. The economics of cost per port per 10Gbps is much more favorable for a 40GBASE-SR4 and 100GBASE-SR10 network. All the transceivers and cabling assemblies presented in the solutions are available in FS.COM. For more details, please visit www.fs.com or contact us via sales@fs.com.

Which 40G QSFP+ Transceivers Can Be Used for 4x10G?

Since the overwhelming growth in data traffic, many data centers are loaded with 10G and 40G based Ethernet switches for 10G to 40G migration. 40G switches allow the configuration of 40G port to act as one port or break out into four individual ports. To get easy 10G/40G migration, we should better select 40G QSFP+ transceivers which can break out as 4x10G connectivity. Among so many versions of 40G QSFP+ transceivers including QSFP-40G-SR4, QSFP-40-CSR4, QSFP-40G-LR4, QSFP-40G-ER4, etc., which 40G QSFP+ transceiver can be used for 4x10G?

QSFP-40G-SR4/CSR4 for 4x10G

40G short distance multimode transceivers are interfaced with 12-fibre MTP/MPO, such as 40G SR4, CSR4. To know why these 40G QSFP+ modules can be used for 4x10G, let’s see how QSFP-40G-SR4 work? First, 4 electrical input signals of 10G converted into parallel optical signals are sent from the transmitter over 4 parallel fibre strands. Then the parallel optical signals are converted into parallel electrical signals by the use of a photo detector array and transmitted to the receiver over another 4 parallel fibre strands. QSFP-40G-SR4 needs 8 fibres to transmit and receive signals. QSFP-40G-SR4 transceivers are interfaced with 12-fibre MTP/MPO. Therefore, QSFP-40G-SR4 and QSFP-40G-CSR4 transceivers can be easily broken down to 4x10G connections. Each 10G signal lane of QSFP-40G-SR4 is compliant to IEEE 10GBASE-SR specifications. And this 10G/40G connection can be achieved by using an MTP-LC harness cable or MTP cable and MTP-LC breakout patch panel to connect the QSFP-40G-SR4 and four 10GBASE-SR modules.

QSFP-SR4-4x10G

Can QSFP-40G-LR4/ER4 Be Used for 4x10G?

QSFP-40G-LR4 transceivers apply CWDM (Coarse Wavelength Division Multiplexing) technology. From the transmitter side, 4 input electrical signals of 10G are converted into 4 CWDM optical signals by a driven 4-wavelength distributed feedback (DFB) laser array. Then 4 CWDM signals are multiplexed to a singlemode fibre for 40G optical signal transmission. On the receiver side, the receiver accepts 40G CWDM optical signals input and demultiplexes them into 4 individual 10G optical data streams with different wavelengths. Multiplexing and demultiplexing of the four wavelengths are managed in the device. The 40 Gigabit Ethernet signal is carried over four wavelengths on a pair of singlemode fibres. The duplex fibres are used for bi-directional transmission. QSFP-40G-LR4 and QSFP-40G-ER4 are interfaced with duplex LC connector. Therefore, we can’t split QSFP-40G-LR4 or QSFP-40G-ER4 to 4 individual duplex SMF fibres to route them to 4 separate 10G transceivers by simple optical rerouting.

QSFP-LR4-4x10G

But if you insist to split the 40G into four 10G streams using QSFP-40G-LR4 or QSFP-40G-ER4 modules, how to achieve that connection? Then you need a simple multiplexer/demultiplexer which split the four wavelengths on duplex fibres into 4x10G signal in four different fibres. With such equipment, the QSFP-40G-LR4 or QSFP-40G-ER4 outputs can be physically broken down from one duplex fibre into four duplex fibres so that each of the wavelengths is transmitted in four different fibres (As the following figure shows).

QSFP-LR4-4x10G-cable

How About QSFP-40G-PLRL4?

From the above content, you may get an inclusion that multimode 40G QSFP+ transceivers can be directly used as 4x10G while singlemode 40G QSFP+ transceivers can’t. However, you ignore one singlemode transceiver QSFP-40G-PLRL4. This 40G QSFP+ transceiver connects with 12-fibre MTP/MPO patch cable though it’s designed for long distance transmission. Similar to QSFP-40G-SR4, QSFP-40G-PLRL4 also needs 8 fibres to transmit and receive signals. So you can easily get 10G/40G singlemode connection applying QSFP-40G-PLRL4.

Summary

Some data centres may face the issue of migration from 10G to 40G. Except the switch, you also need to know 40G QSFP+ transceivers well especially what kind of 40G QSFP+ transceivers can be used for 4x10G connectivity. In this article, you can see 40G QSFP+ transceivers with MTP/MPO interface can achieve that connection by simple optical routing. As to 40G QSFP+ transceivers with duplex LC interface, you need spare equipment for multiplexing/demultiplexing. For 40G to 4x10G solutions, you can find your desired one from FS.COM.

Related article: How to Extend 40G Connection up to 80 km?

QSFP+ to 4xSFP+ AOC and QSFP+ MTP Breakout Cable Solution

How to Select Fibre Patch Cable for 40G QSFP+ Modules?

How to Extend 40G Connection up to 80 km?

As 40G connectivity is accelerating, many data centers prepare to migrate from 10G to 40G. But the link distance between 10G and 40G switches is a big challenge. This article can help you extend 40G connection distance.

Current 40G QSFP+ to 4x10G Connection—Max 10 km

As we know, 40GBASE-SR4 QSFP+ is designed for short distance of up to 150m connection. 40GBASE-PLR4 QSFP+ can support long distance link of up to 10 km. Both 40G QSFP+ modules are interfaced with 12-fibre MTP/MPO and can break out into 4x10G connection. To build 10G-40G connection, for instance, using singlemode 8-fibre MTP-LC harness cable to connect 40GBASE-PLR4 QSFP+ and 4x10G SFP+ modules. As the direct connection distance between two 40GBASE-PLR4 QSFP+ optics can reach at most 10km, it’s easy to understand that the connection between 10G and 40G may be shorter. However, we provide a solution to extend 40G connection to 80km distance. Continue to read this article and find the answer.

10km max

Solution for Extending 40G QSFP+ Connection to 80 km

This solution applies 40CH DWDM MUX/DEMUX and some other WDM devices, which can support at most 10x40G links. 40G links will be realised through 4x10G. And the connection goes like Switch – QSFP+ SR4 – 1×4 MTP-LC harness cable – 10G SFP+ SR – OEO – DWDM 10G SFP+(The following figure would be more clear). Thus, suppose you use G.625 fibre cable and the cable insertion loss is 0.25dB/km, you can get 3dB system margin in this 80km 40G network.

40G connection

80km 40G WDM connection

Equipment for Extending 40G QSFP+ Connection

To extend 40G QSFP+ connection distance, we have to use WDM transponder OEO (Optical-Electrical-Optical) repeater. OEO repeater allows connection between fibre to fibre Ethernet equipment, serving as fibre mode converter, or as fibre repeater for long distance transmission. It can also function as CWDM/DWDM optical wavelength conversion. Now we will use a multi-service transport system, including a hot-swappable plug-in OEO card which only occupies 1 slot. The other space can be left for holding more cards such as DCM, EDFA, OLP. On the left side, there is a card for centralised network management.

WDM transponder oeo

This is a 4-channel multi-rate WDM transponder with an OEO-10G card containing 8 SFP/SFP+ slots and can support up to 11.3G rate. The OEO card can convert 1G~11.3 Gbps Ethernet signals into a corresponding wavelength in CWDM and DWDM network infrastructures. Transmission distance can reach 80 km.

Except WDM transponder OEO repeater, we still need DWDM Mux/Demux and DWDM SFP+ to extend the distance to 80 km. DWDM Mux/Demux is to combine 4x10G signals of different wavelengths on one single fibre so that it’s the best solution to increase network capacity and save cost. Here we use 40-channel C21-C60 dual fibre DWDM Mux/Demux. So we can choose suitable 10G DWDM SFP+ modules 80km transceiver between the wavelengths of C21 and C60.

For your convenience, the following table introduces the whole equipment to realise 80km 40G connection. About the quantity and transceiver brand, you can select according to your specific needs.

Equipment Details
Fibre Transceiver 40GBASE-SR4 QSFP+ 850nm 150m MTP/MPO DOM Transceiver Module
10GBASE-SR SFP+ 850nm 300m DOM Transceiver
C53-C60 DWDM SFP+ 1529.55nm 80km DOM Transceiver
Transponder Repeater 4 Channels Multi-Rate WDM Converter (Transponder), 8 SFP/SFP+ Slots, Up to 11.3G Rate, Pluggable Module for FMT Multi-Service Transport Platform
DWDM Mux/Demux 40 Channels C21-C60 Dual Fibre DWDM Mux Demux with Monitor Port, 3.0dB Typical IL
DWDM EDFA Customised 1U/2U/4U Managed Chassis Unloaded, Supports up to 8x Multiplexer/EDFA/OEO/OLP Module with Accessories
FMT Multiplex Managed Chassis 20dB Gain Pre-Amplifier DWDM EDFA C-band 13dBm Output, Pluggable Module for FMT Multi-Service Transport Platform
Dispersion Compensation Module 40KM DCF-based Passive Dispersion Compensation Module, 3.5dB Low Loss, LC/UPC, Pluggable Module for FMT Multi-Service Transport Platform
MTP-LC Breakout Cable 8 Fibres MPO to 4 LC Duplex OM4 Multimode Breakout Cable, Type B, 1m
Conclusion

10 km transmission distance is not the limit of 40G to 4x10G connection. From this article, you can extend 40Q QSFP+ to 80 km by mainly applying WDM transponder OEO repeater, DWDM Mux/Demux and 10G DWDM SFP+. If need to break your network distance limit, please visit our site www.fs.com/uk or contact us via sales@fs.com.

Related articles:

Economically Increase Network Capacity With CWDM Mux/DeMux
Check out All CWDM Transceiver Modules
User Guide for CWDM MUX/DEMUX