Tag Archives: data center

The Most Common Data Center Design Missteps

Introduction

Data center design is to provide IT equipment with a high-quality, standard, safe, and reliable operating environment, fully meeting the environmental requirements for stable and reliable operation of IT devices and prolonging the service life of computer systems. Data center design is the most important part of data center construction directly relating to the success or failure of data center long term planning, so its design should be professional, advanced, integral, flexible, safe, reliable, and practical.

9 Missteps in Data Center Design

Data center design is one of the effective solutions to overcrowded or outdated data centers, while inappropriate design results in obstacles for growing enterprises. Poor planning can lead to a waste of valuable funds and more issues, increasing operating expenses. Here are 9 mistakes to be aware of when designing a data center.

Miscalculation of Total Cost

Data center operation expense is made up of two key components: maintenance costs and operating costs. Maintenance costs refer to the costs associated with maintaining all critical facility support infrastructure, such as OEM equipment maintenance contracts, data center cleaning fees, etc. Operating costs refer to costs associated with day-to-day operations and field personnel, such as the creation of site-specific operational documentation, capacity management, and QA/QC policies and procedures. If you plan to build or expand a business-critical data center, the best approach is to focus on three basic parameters: capital expenditures, operating and maintenance expenses, and energy costs. Taking any component out of the equation, you might face the case that the model does not properly align an organization’s risk profile and business spending profile.

Unspecified Planning and Infrastructure Assessment

Infrastructure assessment and clear planning are essential processes for data center construction. For example, every construction project needs to have a chain of command that clearly defines areas of responsibility and who is responsible for aspects of data center design. Those who are involved need to evaluate the potential applications of the data center infrastructure and what types of connectivity requirements they need. In general, planning involves a rack-by-rack blueprint, including network connectivity and mobile devices, power requirements, system topology, cooling facilities, virtual local and on-premises networks, third-party applications, and operational systems. For the importance of data center design, you should have a thorough understanding of the functionality before it begins. Otherwise, you’ll fall short and cost more money to maintain.

data center

Inappropriate Design Criteria

Two missteps can send enterprises into an overspending death spiral. First of all, everyone has different design ideas, but not everyone is right. Second, the actual business is mismatched with the desired vision and does not support the setting of kilowatts per square foot or rack. Over planning in design is a waste of capital. Higher-level facilities also result in higher operational and energy costs. A data center designer establishes the proper design criteria and performance characteristics and then builds capital expenditure and operating expenses around it.

Unsuitable Data Center Site

Enterprises often need to find a perfect building location when designing a data center. If you don’t get some site-critical information, it will lead to some cases. Large users are well aware of the data center and have concerns about power availability and cost, fiber optics, and irresistible factors. Baseline users often have business model shells in their core business areas that decide whether they need to build or refurbish. Hence, premature site selection or unreasonable geographic location will fail to meet the design requirements.

Pre-design Space Planning

It is also very important to plan the space capacity inside the data center. The raised floor to support ratio can be as high as 1 to 1, while the mechanical and electrical equipment needs enough space to accommodate. In addition, the planning of office and IT equipment storage areas also needed to be considered. Therefore, it is very critical to estimate and plan the space capacity during data center design. Estimation errors can make the design of a data center unsuitable for the site space, which means suspending project re-evaluation and possibly repurchasing components.

Mismatched Business Goals

Enterprises need to clearly understand their business goals when debugging a data center so that they can complete the data center design. After meeting the business goals, something should be considered, such as which specific applications the data center supports, additional computing power, and later business expansion. Additionally, enterprises need to communicate these goals to data center architects, engineers, and builders to ensure that the overall design meets business needs.

Design Limitations

The importance of modular design is well-publicized in the data center industry. Although the modular approach refers to adding extra infrastructure in an immediate mode to preserve capital, it doesn’t guarantee complete success. Modular and flexible design is the key to long-term stable operation, also meets your data center plans. On the power system, you have to take note of adding UPS (Uninterruptible Power Supply) capacity to existing modules without system disruption. Input and output distribution system design shouldn’t be overlooked, it can allow the data center to adapt to any future changes in the underlying construction standards.

Improper Data Center Power Equipment

To design a data center to maximize equipment uptime and reduce power consumption, you must choose the right power equipment based on the projected capacity. Typically, you might use redundant computing to predict triple server usage to ensure adequate power, which is a waste. Long-term power consumption trends are what you need to consider. Install automatic power-on generators and backup power sources, and choose equipment that can provide enough power to support the data center without waste.

Over-complicated Design

In many cases, redundant targets introduce some complexity. If you add multiple ways to build a modular system, things can quickly get complicated. The over-complexity of data center design means more equipment and components, and these components are the source of failure, which can cause problems such as:

  • Human error. Data statistics errors lead to system data vulnerability and increase operational risks.
  • Expensive. In addition to equipment and components, the maintenance of components failure also incurs more charges.
  • Design concept. If maintainability wasn’t considered by the data center design when the IT team has the requirements of operating or servicing, system operational normality even human security get impacts.

Conclusion

Avoid the nine missteps above to find design solutions for data center IT infrastructure and build a data center that suits your business. Data center design missteps have some impacts on enterprises, such as business expansion, infrastructure maintenance, and security risks. Hence, all infrastructure facilities and data center standards must be rigorously estimated during data center design to ensure long-term stable operation within a reasonable budget.

Article Source: The Most Common Data Center Design Missteps

Related Articles:

How to Utilize Data Center Space More Effectively?

Data Center White Space and Gray Space

5G and Multi-Access Edge Computing

Over the years, the Internet of Things and IoT devices have grown tremendously, effectively boosting productivity and accelerating network agility. This technology has also elevated the adoption of edge computing while ushering in a set of advanced edge devices. By adopting edge computing, computational needs are efficiently met since the computing resources are distributed along the communication path, i.e., via a decentralized computing infrastructure.

One of the benefits of edge computing is improved performance as analytics capabilities are brought closer to the machine. An edge data center also reduces operational costs, thanks to the reduced bandwidth requirement and low latency.

Below, we’ve explored more about 5G wireless systems and multi-access edge computing (MEC), an advanced form of edge computing, and how both extend cloud computing benefits to the edge and closer to the users. Keep reading to learn more.

What Is Multi-Access Edge Computing

Multi-access edge computing (MEC) is a relatively new technology that offers cloud computing capabilities at the network’s edge. This technology works by moving some computing capabilities out of the cloud and closer to the end devices. Hence data doesn’t travel as far, resulting in fast processing speeds.

Ideally, there are two types of MEC, dedicated MEC and distributed MEC. Dedicated MEC is typically deployed at the customer’s site on a mobile private network and is designed only for one business. On the other hand, distributed MEC is deployed on a public network, either 4G or 5G, and connects shared assets and resources.

With both the dedicated and distributed MEC, applications run locally, and data is processed in real or near real-time. This helps avoid latency issues for faster response rates and decision-making. MEC technology has seen wider adoption in video analytics, augmented reality, location services, data caching, local content distribution, etc.

How MEC and 5G are Changing Different Industries

At the heart of multi-access edge computing are wireless and radio access network technologies that open up different networks to a wide range of innovative services. Today, 5G technology is the ultimate network that supports ultra-reliable low latency communication. It also provides an enhanced mobile broadband (eMBB) capability for use cases involving significant data rates such as virtual reality and augmented reality.

That said, 5G use cases can be categorized into three domains, massive IoT, mission-critical IoT, and enhanced mobile broadband. Each of the three categories requires different network features regarding security, mobility, bandwidth, policy control, latency, and reliability.

Why MEC Adoption Is on the Rise

5G MEC adoption is growing exponentially, and there are several reasons why this is the case. One reason is that this technology aligns with the distributed and scalable nature of the cloud, making it a key driver of technical transformation. Similarly, MEC technology is a critical business transformation change agent that offers the opportunity to improve service delivery and even support new market verticals.

Among the top use cases driving the high level of 5G, MEC implementation includes video content delivery, the emergence of smart cities, smart utilities (e.g., water and power grids), and connected cars. This also showcases the significant role MEC plays in different IoT domains. Here’s a quick overview of the primary use cases:

  • Autonomous vehicles – 5G MEC can help enhance operational functions such as continuous sensing and real-time traffic monitoring. This reduces latency issues and increases bandwidth.
  • Smart homes – MEC technology can process data locally, boosting privacy and security. It also reduces communication latency and allows for fast mobility and relocation.
  • AR/VR – Moving computational capabilities and processes to edge amplifies the immersive experience to users, plus it extends the battery-life of AR/VR devices.
  • Smart energy – MEC resolves traffic congestion issues and delays due to huge data generation and intermittent connectivity. It also reduces cyber-attacks by enforcing security mechanisms closer to the edge.
MEC Adoption
MEC Adoption

Getting Started With 5G MEC

One of the key benefits of adopting 5G MEC technology is openness, particularly API openness and the option to integrate third-party apps. Standards compliance and application agility are the other value propositions of multi-access edge computing. Therefore, enterprises looking to benefit from a flexible and open cloud should base their integration on the key competencies they want to achieve.

One of the challenges common during the integration process is hardware platforms’ limitations, as far as scale and openness are concerned. Similarly, deploying 5G MEC technology is costly, especially for small-scale businesses with limited financial backing. Other implementation issues include ecosystem and standards immaturity, software limitations, culture, and technical skillset challenges.

To successfully deploy multi-access edge computing, you need an effective 5G MEC implementation strategy that’s true and tested. You should also consider partnering with an expert IT or edge computing company for professional guidance.

5G MEC Technology: Key Takeaways

Edge-driven transformation is a game-changer in the modern business world, and 5G multi-access edge computing technology is undoubtedly leading the cause. Enterprises that embrace this new technology in their business models benefit from streamlined operations, reduced costs, and enhanced customer experience.

Even then, MEC integration isn’t without its challenges. Companies looking to deploy multi-access edge computing technology should have a solid implementation strategy that aligns with their entire digital transformation agenda to avoid silos.

Article Source: 5G and Multi-Access Edge Computing

Related Articles:

What is Multi-Access Edge Computing?https://community.fs.com/blog/what-is-multi-access-edge-computing.html

Edge Computing vs. Multi-Access Edge Computing

What Is Edge Computing?

Interconnect and Cross Connect in Data Center

As massive amounts of data are transferred and stored across the globe, many organizations are placing greater emphasis on network performance to provide great customer service and build a fast and reliable network for their employees. Improving network connectivity in data centers is one of the most basic and critical ways to optimize network and hybrid architecture. When it comes to the connection between the horizontal cabling and active equipment such as switches, there are two basic configurations that are interconnect and cross connect.

Interconnect and Cross Connect Basics

Interconnect in data center is to use a patch panel on the active equipment to distribute links from device to other devices in the data center, commonly known as the distribution panel. In an interconnect system, patching is done directly between the active equipment and the distribution patch panel. More specifically, outlets are terminated to a patch panel, and the patch panel is then patched directly to a switch, as shown in the figure below.

Interconnect
Interconnect

A cross connect in data center is the use of additional patch panels to mirror the ports of the equipment being connected, essentially creating a separate patching zone that provides connection between different equipment by patch cords. In a cross-connect system, the switch ports are replicated on the additional patch panel, also called equipment patch panel, and patching is carried out between the equipment patch panel and the distribution patch panel. Basically, there are two types of cross-connects, which are three-connector cross-connect and four-connector cross connect.

The structure of a three-connector cross connect is similar to interconnect mentioned above, just adding a cross-connecting process at the switch end, as shown below.

Three-Connector Cross Connect
Three-Connector Cross Connect

Four-connector cross connect usually requires a patch field which is usually an individual cabinet. In this case, two copper trunk cables are working as permanent cables, making the cabling system easier to manage.

Four-Connector Cross Connect
Four-Connector Cross Connect

Interconnect Vs Cross Connect: How to Choose?

Currently, most cabling systems use interconnect design. But some people indicate the cross connect is preferred as it increases the reliability of the system. Choosing the right cabling system should be based on the needs of data center connectivity combining these two systems’ cost, security and management, as discussed below.

Costs

The cross connect design doubles the number of patch panels needed, which obviously requires more cabling and connectivity, and places more connectivity points (and therefore insertion loss) into a channel. Therefore, an interconnect design is quicker, easier and cheaper to deploy than a cross connect design and provides better transmission performance.

Security

A cross connect cabling involves a dedicated patching area that isolates mission-critical active equipment away from the passive patch zone, thus preventing any tampering with sensitive equipment ports during routine maintenance. Therefore, the cross connect design can improve reliability as it reduces misoperations and ensures fast fault recovery.

Management

Compared to interconnect systems, the cross connect design offers prominent advantages in management. In a cross connect system, the cables connected to switches and servers can be fixed and regarded as permanent connections. When moves, additions, and replacements are required, maintenance personnel only need to change the jumpers between patch panels, whereas it is inevitable to plug and remove the cables of the switch and server ports in interconnect systems. However, even though the interconnect system does not have a dedicated patching area to simplify management, it requires less rack space, which may be favored by communication rooms with limited space.

Conclusion

Cross connect design doubles patch panels and requires more cabling and connectivity than interconnect design, resulting in more rack space and significantly higher costs, but it simplifies management and improves reliability for data centers. Organizations can choose the right cabling system based on their actual situation and needs.

Article Source: Interconnect and Cross Connect in Data Center

Related Articles:

Data Center Pre-terminated Copper Trunk Cable Solution

Data Center Architecture Design: Top of Rack vs End of Row

Fiber Optic Components for Building 10G Data Centers

10 Gigabit Ethernet is a telecommunication technology that can support the network speed up to 10 billion bits per second. It’s also known as 10GbE. As 10GbE greatly increases bandwidth, many companies start to upgrade the data centers to meet their growing needs. How to build a 10G data center? What kind of equipment will be used except the switch? This article will recommend you some basic 10G solutions.

10G SFP+ (small form-factor pluggable plus) modules are hot swappable transceivers that plug into SFP+ slots on switches and support 10G data center. With small form factor, SFP+ transceivers can ensure low power disruption and high port density. Since it’s hot pluggable, the transceiver modules can be added or removed without interrupting the whole network. And SFP+ modules deliver data transmission speed of up to 10Gbit/s, which is 10 times faster than Gigabit Ethernet.

10g-sfp-module

Currently, a wide variety of SFP+ modules can be purchased in the market. For the long distance transmission, modules include SFP-10GBASE-LR, SFP-10GBASE-ER, SFP-10GBASE-ZR, CWDM SFP+ and DWDM SFP+. For the short distance transmission, there are modules like SFP 10GBASE-SR, SFP-10GBASE-LRM. Brands are also versatile such as Cisco, Juniper, Arista, Brocade, etc. To get modules with lower costs, you can pick third-party transceivers which are compatible with these original brands.

Patch cables contain both fiber and copper types. Fiber patch cords, as one of the data transmission media, enjoy great popularity because they have large transmission capacity, strong anti-electromagnetic interference, high security and fast speed. LC fiber patch cord is one of the most common cables for 10G data center, covering single-mode and multimode categories respectively for data transmission over long distance and short distance. To increase panel density, flexible HD LC push-pull tab fiber patch cable is designed. With its unique design, this patch cable allows the connector to be disengaged easily from densely loaded panels without the need for special tools and give users easy accessibility in narrow areas for data center deployment applications. Another special LC patch cord is uniboot patch cord. It utilizes a special “round duplex” cable that allows duplex transmission within a single cable. It’s good for saving cable management space comparing to standard patch cords.

lc-patch-cable

10G SFP+ Direct Attach Cable Assemblies

10G SFP+ direct attach cable (DAC ) is a cost-effective solution for 10G data center. It’s a low-power alternative to optical SFP+ system. The 10G SFP+ cables provide low-cost and reliable 10G speed with either copper cables over distances up to 10 m or active optical cables reaching distances up to 100 m. Because there is no need for spending on fiber optic transceivers and cables. This kind of cables contain 10G SFP+ copper cables, both passive and active and active optical cable (AOC). Active copper cable and AOC are designed for long distance connection, while passive copper cable is for short distance, such as the interconnection of top-of-rack switches with application servers and storage devices in a rack.

10g-sfp-cables

Fiber Enclosure

Fiber enclosure is an equipment you must have in data centers. This component is used to provide a flexible and modular system for managing fiber terminations, connections, and patching in high density data center application to maximize rack space utilization and minimize floor space. Fiber enclosure can be divided into different configurations like rack mount (available in 1U, 2U, 3U, 4U), wall mount, indoor or outdoor. The rack mount enclosure come into three flavors. One is the slide-out type and the other two are removable type and swing out type. Fiberstore introduces high density fiber enclosures with 48 ports, 96 ports and even 288 ports loaded LC FAPs (fiber adapter panels) in 1RU or 4RU rack mount for 10G solutions. Or if you already have the unloaded fiber enclosures, you just need to buy fiber adapter panels.

288-pors-4u-patch-panel-enclosure

Conclusion

To build a 10G data center, you have to prepare the components, for instance, 10G SFP+ modules, LC patch cables, 10G SFP+ cables, fiber enclosures, etc. You may also need other instruments for testing and cable organization. And all those equipment can be got from FS.COM with higher quality but fewer costs. For more information, you can contact us via sales@fs.com.