Category Archives: Copper Networks

Among so many categories of copper cables such as Cat5e, Cat6, Cat6a, Cat7, even Cat8, what kind of cables should you choose? And how to make Ethernet patch cables by yourself? For more copper networks information, check the following articles.

24AWG vs 26AWG vs 28AWG Ethernet Cable: What Is the Difference?

An Ethernet cable serves the basic purpose to connect devices to wired networks. However, not all Ethernet cables are created equal. When shopping for Cat5e, Cat6 or Cat6a Ethernet cable, you may notice an AWG specification printed on the cable jacket, like 24AWG, 26AWG, or 28AWG. What does the term AWG denote? 24AWG vs 26AWG vs 28AWG Ethernet cable: what is the difference?

What Does AWG Mean?

The AWG stands for American Wire Gauge, a standardized system for describing the diametre of the individual conductors of wires that make up a cable. The higher the wire gauge number, the smaller the diametre and the thinner the wire. Thicker wire carries more current because it has less electrical resistance over a given length, which makes it better for longer distances. For this reason, where extended distance is critical, a company installing a network might prefer Ethernet wires with the lower-gauge, thicker wire of AWG24 rather than AWG26 or AWG28.

24AWG vs 26AWG vs 28AWG Ethernet Cable: What Is the Difference?

To understand the differences among 24AWG vs 26AWG vs 28AWG Ethernet cable with different AWG sizes, let’s take a look at how the wire gauge affects the wire conductor size, the transmission speed & distance as well as the resistance & attenuation.

Wire Diametre of Conductors

AWG is used as a standard method denoting wire diametre, measuring the diametre of the conductor (the bare wire) with the insulation removed. The smaller the gauge, the larger the diametre of the wire as listed in the chart below. The larger diametre of 24AWG network cable makes for a stronger conductor which is a benefit when being pulled on during installation or when routed through machines and other equipment.

AWG Wire Diametre
24 Gauge 0.0201 inches
26 Gauge 0.0159 inches
28 Gauge 0.0126 inches
Transmission Speed & Distance

The wire gauge of the Ethernet cable has no relationship with the transmission speed of the cables. So there are 24AWG, 26AWG and even 28AWG Cat5e Ethernet cable and Cat6 Ethernet cable on the market. Copper network cables with a smaller gauge (larger diametre) are typically available in longer lengths because they offer less resistance, allowing signals to travel farther. Therefore, the 24AWG Ethernet cable is the way to go especially for those longer runs, while the 26AWG and 28AWG Ethernet cable are more preferred for relatively shorter distances.

Resistance & Attenuation

The larger the diametre of a wire, the less electrical resistance there is for the signals it carries. A 24AWG network cable will offer less resistance than a 26AWG or 28AWG network cable. Since the 24AWG conductor is larger than 26AWG cable, it has lower attenuation over length properties. Thus when selecting between 24AWG vs 26AWG Ethernet cable, 24AWG would be preferable to 26AWG, because 24AWG Ethernet cable is more durable with lower attenuation than 26AWG Ethernet cable. All shielded (STP, FTP, SSTP) cables on the market are 26AWG and all unshielded cables are 24AWG or 28AWG.

However, you may also noticed that the thinner versions of Cat5e, Cat6 and Cat6a slim patch cables constructed of 28AWG wire have sprung up on the market. These slim Ethernet cables can be more than 25% smaller in diametre than their full-size counterparts. The 28AWG slim Ethernet cables with thinner wires improve airflow in high-density racks and can be more easily installed in crowded space compared to 24AWG or 26AWG Ethernet cables.

24AWG vs 26AWG vs 28AWG Ethernet Cable: Which Is Best?

24AWG vs 26AWG vs 28AWG Ethernet cable, which one is the best option for your network? The smaller the gauge, the larger the diametre of the wire. The larger the diametre of a wire, the less electrical resistance there is for the signals it carries. For long runs with more potential damage, the 24AWG Ethernet cable is the best, because it comes with stronger conductors with lower attenuation. If you’re considering to save more space, the 28AWG slim Ethernet cable would be more suitable to enable higher density layouts and simplify cable management.

Cat6 Flat vs Round Ethernet Cable: Which One to Choose?

When setting up a wired network, the Ethernet cable is the first thing that is mentioned to wire up the computer room or lounge room. Most people are quite familiar with the common types of Ethernet cables, such as Cat5e Ethernet cable, Cat6 cable, Cat7 Ethernet cable and Cat8 Ethernet cable. But they don’t know the some Ethernet cables can also be classified into the flat Ethernet cable and the round Ethernet cable according to the cable shape. Here will take Cat6 flat and round cables as example to introduce flat Ethernet cable vs round Ethernet cable.

What Is the Flat Ethernet Cable?

The flat Ethernet cable is a flat form of copper wire with the twisted pairs arranged side by side rather than squared up. Most flat Ethernet cables are unshielded because it is very difficult to place an overall shield on a flat Ethernet cable, as the shielding material tends to become round which cannot hold a flat format. This makes external EMI (Electromagnetic Interference) protection of the flat Ethernet cable not readily available, because this natural shielding tendency provides better protection against external EMI for round cables.

Flat Ethernet Cable

Figure 1: Flat Ethernet Cable

What Is the Round Ethernet Cable?

The round Ethernet cable is a round form of insulated wire that contains some layers of filler substances to keep the original circular shape which helps in minimizing the heating in the Ethernet cables due to the friction. Such filler material also protects the cord against some outer elements. In the data centres and telecom rooms, the round electrical wires are more commonly utilized than the flat ones.

flat ethernet cable vs round

Figure 2: Round Ethernet Cable

Flat Ethernet Cable vs Round Ethernet Cable: How Do They Differ?

Though the telecommunication industry uses both flat and round Ethernet cables, each of them has some advantages over the other one. Let’s take a look at the comparison of flat Ethernet cable vs round Ethernet cable.

Cable Design & Cost

The round Ethernet cables with some layers of filler substances are more durable and are designed to maximize space within the smallest cross-sectional area required which allows round Ethernet cables to fit in most panel or machine openings. In contrast, the flat Ethernet cables do not include any protective filler which in turn reduce the weight and cost of the cable itself. Besides, the flat Ethernet cables provide more consistency in electrical equality of conductors which does not happen in round Ethernet cables.

Installation & Maintenance

The flat Ethernet cable is designed for permanent installation and is not recommended for standardized patch leads. This is also the reason why most of the standard Category cables including the Cat6 Ethernet cable, Cat7 Ethernet cable and Cat8 Ethernet cable on the market are round Ethernet cables. The flat Ethernet cables require more maintenance than the round wires. Also, they cannot provide as high uptime as the round Ethernet cables deliver.

Insulation & Attenuation

Flat Ethernet cables use the same insulation the electrical properties should have. That is to say, most flat Ethernet cables skimp on the insulation & conductor size. Since the flat Ethernet cables are more susceptible to interference, they are not good for overly long runs, but any run that falls in the 100 meter range shouldn’t have any issues at 1Gb. In most cases, attenuation tends to be worse when using a flat Ethernet cable because of the increased electromagnetic interference.

Flat Ethernet Cable vs Round Ethernet Cable: Which One to Choose?

Through the above analysis, we can find that both the flat Ethernet cable and the round Ethernet cable have their own merits and demerits. Flat Ethernet cables are more light weighted and cheaper than round Ethernet cables. However, the flat Ethernet cables are less sustainable and require more maintenance than the round wires. When selecting between the flat Ethernet cable vs round Ethernet cable, all these factors need to be weighed all sided and make a balance over your actual requirement.

Ethernet Cable Types Explained: All You Need To Know

An Ethernet cable or network cable is the medium for wired networks to connect the networking systems and servers together. It plays an integral role in cabling for both residential and commercial purposes. When it comes to using Ethernet cables for setting up network connections, choosing a perfect cable is always a daunting task since there are various Ethernet cables types available for different purposes. According to the bundling types of the twisted pairs, the wiring forms, and the cable speeds or bandwidths, Ethernet cable types on the market can be classified into shielded or unshielded, straight-through or crossover, Cat5/Cat5e/Cat6/Cat7/Cat8 Etherent cables respectively. How to identify the most suitable one for your needs among the diversified Ethernet cable types? This post will give you the answer.

Bundling Types in the Jacket: Shielded vs Unshielded Ethernet Cable

Shielded (STP) Ethernet cables are wrapped in a conductive shield for additional electrical isolation, then bundled in the jacket. The shielding material is used to reduce external interference and the emission at any point in the path of the cable. Unshielded (UTP) Ethernet cables without the shielding material provide much less protection against such interference and the performance is often degraded when interference or disturbance is present. STP cables are more expensive due to the shielding, which is an additional material that goes into every meter of the cable. Compared with the unshielded Ethernet cable, the shielded Ethernet cable is heavier and stiffer, making it more difficult to handle.

Wiring Forms: Crossover Cable vs Straight-through Ethernet Cable

Straight-through cable refers to an Ethernet cable with the pin assignments on each end of the cable. In other words Pin 1 connector A goes to Pin 1 on connector B, Pin 2 to Pin 2 and so on. Straight-through wired cables are most commonly used to connect a host to client.

Straight-Through-cable

In contrast, the crossover cables are very much like straight-through cables with the exception that TX and RX lines are crossed (they are at opposite positions on either end of the cable. Using the 568-B standard as an example below you will see that Pin 1 on connector A goes to Pin 3 on connector B. Pin 2 on connector A goes to Pin 6 on connector B and so on. Crossover cables are most commonly used to connect two hosts directly.

Crossover cable

Speeds & Bandwidths: Cat5/Cat5e/Cat6/Cat6a/Cat7/Cat8 Ethernet Cable

Defined by the Electronic Industries Association, the standard Ethernet cable types can be divided into Cat5/Cat5e/Cat6/Cat6a/Cat7/Cat8 categories to support current and future network speed and bandwidth requirements.

Cat5 Ethernet Cable

Cat5 Ethernet cable introduced the 10/100 Mbps speed to the Ethernet, which means that the cables can support either 10 Mbps or 100 Mbps speeds. A 100 Mbps speed is also known as Fast Ethernet, and Cat5 cables were the first Fast Ethernet-capable cables to be introduced. Cat5 Ethernet cable can also be used for telephone signals and video, in addition to Ethernet data.

Cat5e Ethernet Cable

Cat5e Ethernet cable is an enhanced version of Cat5 cable to handle a maximum bandwidth of 100 MHz. Cat5e Ethernet cable is optimized to reduce crosstalk, or the unwanted transmission of signals between data channels. Although both Cat5 and Cat5e Ethernet cable types contain four twisted pairs of wires, Cat5 only utilizes two of these pairs for Fast Ethernet, while Cat5e uses all four, enabling Gigabit Ethernet speeds. Cat5e cables are backward-compatible with Cat5 cables, and have completely replaced Cat5 cables in new installations.

Cat6 Ethernet Cable

Cat6 Ethernet cable is certified to handle Gigabit Ethernet with a bandwidth of up to 250 MHz. It has better insulation and thinner wires, providing a higher signal-to-noise ratio. Cat6 Ethernet cables are better suited for environments in which there may be higher electromagnetic interference. Cat6 Ethernet cables can be available in both UTP and STP forms, and they are backward-compatible with both Cat5 and and Cat5e cables.

Cat6a Ethernet Cable

Cat6a Ethernet cable improves upon the basic Cat6 Ethernet cable by allowing 10 Gbps (10,000 Mbps) data transmission rates and effectively doubling the maximum bandwidth to 500 MHz. Category 6a cables are usually available in STP form, therefore they must have specialized connectors to ground the cables.

Cat7 Ethernet Cable

Cat7 Ethernet cable is a fully shielded cable that supports speeds of up to 10,000 Mbps and bandwidths of up to 600 MHz. Cat7 cables consist of a screened, shielded twisted pair (SSTP) of wires, and the layers of insulation and shielding contained within them are even more extensive than that of Cat6 cables.

Cat8 Ethernet Cable

The newly upgraded Cat8 Ethernet cable supports up to 2000MHz and speeds up to 40Gbps over 20 meters. It is fully backward compatible with all the previous categories. With inner aluminum foil wrapped around pairs and outer CCAM braid shielding, the Cat8 Ethernet cable can prevent from electromagnetic and radio frequency interference very well.

Conclusion

When setting up a wired connection in your home or office, you need to obtain the proper Ethernet cable types which can work with your equipment. If you are looking to connect two different devices such as computer to switch or router to hub, the straight-through cable may be the best solution. If you connect two computers together, you will need a crossover cable. The decision over UTP and STP Ethernet cable types depends on how much extent of electrical isolation is needed. When choosing among Cat5/Cat5e/Cat6/Cat7/Cat8 Ethernet cable types, it is undoubted that the more upgraded version can deliver better performance and functionality. It mainly depends on your speed and bandwidth requirement that would suit your equipment best.

Cat5e VS Cat6 VS Cat7 VS Cat6a: Which One to Choose?

In the era of information explosion, almost everyone can get access to the Internet, and almost everywhere is loaded with the network cable. But you may be unaware of the fact that Cat5e/Cat6/Cat6a/Cat7 Ethernet network cables, though look like the same, actually are totally different. Here, this post will focus on Cat5e vs Cat6 vs Cat6a vs Cat7. May it help with your choice in selecting the appropriate category of cable to support your network.

Cat5e vs Cat6 vs Cat7

Cat5e VS Cat6

As regard with Cat5e vs Vat6, both of them are twisted pair cables, performing the same job. They all have the same style RJ-45 plug, and it is capable of plugging into an Ethernet jack on a computer, router, or other similar devices. Despite all the similarities, they do have some differences as shown in the following chart:

Features/Categories Cat5e Cable Cat6 Cable
Speed 1000Mbps 10 Gbps over 37-55 meters of cable
Frequency 100MHz 250 MHz
Maximum Cable Length 100 meters 100 meters for slower network speeds (up to 1,000 Mbps) and higher network speeds over short distances. For Gigabit Ethernet, 55 meters max
Standard Gauges in Conductors 24-26 AWG wire 22-24 AWG wire
Performance Cat6<Cat5e (interference or crosstalk) <Cat5 Lower crosstalk, return loss and insertion loss, higher signal-to-noise ratio

As we can see from the chart, Cat5e cable (Cat5 Enhanced) offers gigabit Ethernet up to 100 meters and can support 1000Mbps speeds at 100MHz. Cat6 can provide up to 10-gigabit speeds at 250MHz. Both Cat5e and Cat6 cable allow lengths up to 100 meters, but Cat6 has a lower max length (55 meters) when used for 10GBASE-T. The main difference between Cat5e vs Cat6 lies in the transmission performance. Cat6 has an internal separator that lowers interference or near end crosstalk (NEXT). It also improves equal level far end crosstalk (ELFEXT), return loss and insertion loss compared with Cat5e. As a result, Cat6 has a higher signal-to-noise ratio than Cat5e.

Cat6 VS Cat6a VS Cat7

Features/Categories

Cat6

Cat6a

Cat7

Speed

10 Gbps with a distance of 37-55 meters

10 Gigabit Ethernet with a distance up to 100 meters

10 Gbps with distance up to 100 meters

Connector Type

RJ45

RJ45

GG45

Frequency

250 MHz

500 MHz

600 MHz

Performance

Cat6 (crosstalk) >Cat6a

Cat6>Cat6a (crosstalk) >Cat7

the least amount of crosstalk

Standard

TIA/EIA recognition and standards

TIA/EIA recognition and standards

No TIA/EIA recognition

Best Use

households

households

multiple applications or offices

As is shown in this chart, Cat6 supports speeds up to 10 Gigabit Ethernet and frequencies of up to 250MHz and can be achieved with the distance of 33-55 meters. Cat6a can support bandwidth frequencies of up to 500 MHz, twice the amount of Cat6 cable, and can also support 10Gbps like its predecessor. While Cat7 supports bandwidth frequencies of up to 600 MHz. It also supports 10GBASE-T Ethernet over the full 100 meters like Cat6a. Besides, it features improved crosstalk noise reduction compared to Cat6 and Cat6a. Cat5e, Cat6, and Cat6a are all equipped with RJ45 connectors but Cat7 cable requires special GigaGate45 (CG45) connectors. The Telecommunications Industry Association (TIA) and Electronic Industries Alliance (EIA) have set standards for wires and cabling, which help standardize installation and performance. At this time, Cat6 and Cat6a are recognized by TIA/EIA standards, but Cat7 is not. With respect to the best application, Cat6 and Cat6a are suitable for home use. On the contrary, if you’re running multiple applications, or using it in a business environment, you’d better choose Cat7 cables because these can support multiple applications with fewer errors and less crosstalk.

Conclusion

This article reveals some comparisons between Cat5e vs Cat6, Cat6a vs Cat7, covering speed, frequency, performance, etc. They all have different features, performances, and applications. So if you are considering installing Ether cable, be sure to take these factors into consideration, and opt for the one suited to your need most.

Related Article: 

Running 10GBASE-T Over Cat6 vs Cat6a vs Cat7 Cabling?
Cat6a Shielded vs. Unshielded: Which Is Better?
Home Ethernet Wiring Guide: How to Get a Wired Home Network?

Cat6 vs Cat6a Copper Cable Differences

As the data speeds increase from Fast Ethernet to Gigabit Ethernet, cables for the network connection are also required to be improved. Cat6 and Cat6a are two kinds of copper cables for Gigabit Ethernet. “A” is short for “augmented”. Cat6a is an enhanced Cat6 cable. Cat6 vs Cat6a, Do you know which one to use? Could these two categories replace each other? Now this article will tell some of their differences from several sides.

Cat6 vs Cat6a

Cat6 vs Cat6a Appearance

It’s not difficult to identify Cat6 and Cat6a cables from appearance. If you look at the jacket carefully, you will find the identifiers printed as Cat6 and Cat6a. You can also distinguish these two cables from thickness. Cat6a cables are much thicker than Cat6 cables.

Cat6 vs Cat6a Shielding

Copper cables have shielded twisted pair (STP) and unshielded twisted pair (UTP). STP cable means there is one or more additional jackets surrounding the inner twisted wire pairs for insulation. The shielding is beneficial for protecting cable from electromagnetic interference (EMI). (For more information about STP vs. UTP difference, you can refer to my blog “STP vs. UTP, Which One Is Better?” .) Cat6 and Cat6a cables also include these two types. Though shielded Cat6 cables are available in the market, unshielded versions are easier to get. On the contrary, shielded Cat6a cables are more common.

Cat6 vs Cat6a Transmission Distance

Cat6 cable can support the transmission distance up to 100 metres at the data rate of 10, 100, 1000 Mbps. But it can support only 55 metres at the speed of 10 Gbps when crosstalk is in an ideal situation. What’s worse, the transmission distance can only reach 33 metres when the crosstalk is high. So the lengths of Cat6 cables are influenced by the network speed and crosstalk conditions. While Cat6a cables can support the distance over 100 metres at the speed of 10 Gbps.

Cat6 vs Cat6a Cost

Take Fiberstore as an example, the average cost of 1m Cat6 cable is about 1.00 US$ and more than 3.00 US$ for 1m Cat6a cable (cables maybe more expensive on other sites.). The more cables you purchase, the bigger the price difference will be. And the price difference is not only caused by the cable. Other matched connection components should also be considered.

Cat6 vs Cat6a Durability

As mentioned above, Cat6a cable is thicker and heavier than Cat6 cable. Cable trays can not hold as many Cat6a cables as Cat6 cables. When laying cables on the trays, you should better not bend cables too much as this can damage the wiring and influence network performance. The minimum radius that a cable can be bent without damaging is called the bend radius. The lower the bend radius, the more you can bend the cable. As Cat6a cable is bulkier than Cat6, Cat6a cable has a larger bend radius than Cat6 cable.

Cat6 vs Cat6a, Which One Should You Buy?

Although Cat5e cable can meet the current needs in your home or office, higher bandwidth will be required in the near future. So you should upgrade your network with Cat6 or Cat6a cables which can provide greater bandwidth. At that time, you need to figure out which one to buy. If you install cables in a small room or business offices where cables might get close to one another, then Cat6a is better than Cat6 due to the alien crosstalk. Cat6 cables especially the unshielded cables, are much more prone to alien crosstalk than Cat6a, which uses superior insulation to protect its wiring.

Summary

From this article, you can make a clear identification of Cat6 and Cat6a cables. When you plan to purchase cables, you need to consider their differences like shielding, transmission distance, cost, durability, etc. Hope you can choose the suitable cable and build a high performance network.

Related Articles
Cat6a Shielded vs. Unshielded: Which Is Better?
Quick View of Ethernet Cables Cat5, Cat5e And Cat6

UTP vs STP Cable, Which One Is Better?

When you prepare to buy network cables, you have to choose between UTP and STP cables. UTP is short for Unshielded Twisted Pair while STP is for Shielded Twisted Pair. That’s really difficult to decide if you don’t have enough knowledge of  UTP vs STP cable differences. Do you want to know more? Read this article and you will find the answer.

Why Are There STP and UTP Cables?

In data communication, electromagnetic interference (EMI) exists in Ethernet patch cables. EMI, also called radio frequency interference (FRI), is a disturbance. This disturbance is caused by an external source affecting an electrical circuit by electrostatic coupling, electromagnetic induction, or conduction. The external source can be natural or man-made. For example, the natural sources include the sun, thunderstorms, etc., while the man-made sources are vehicle ignition systems, cell phones, etc. EMI may cause data error and influence the transmission quality of cabling systems. In consideration of decreasing or avoiding EMI, shielding is one of the methods applied to protect cabling systems.

 UTP vs STP: What Is STP Cable?

STP cable has a shield inside which is composed of copper tape, a layer of conducting polymer or a braid (made of copper or aluminum mostly). There are different types of shielding, such as braided shield, foil, and screening. That makes different levels of shielding, including STP, SSTP (screened shielded twisted pair), FTP (foil twisted pair). The shield can be applied to each one of the pairs in a cable or to all pairs together.

 UTP vs STP: stp cable

STP Cable Advantages and Disadvantages

First, the shield of STP cables can reduce EMI. It’s good for increasing data transmission quality in buildings containing microwave equipment, HVAC (Heating Ventilation Air Conditioning) systems or radio transmitters. It blocks interference generated from devices such as power tools and vacuum cleaners. Although UTP cables are still able to reduce interference, their performance is not as good as STP cables.

Second, STP cables can reduce crosstalk with proper installation and maintenance. STP cables can resist signals from passing through the outer coating and entering nearby wires by accident because of the special cable structure. STP cables are quite necessary for dealing with crosstalk especially when your building contains numerous network devices.

UTP vs STP: What Is UTP Cable?

UTP cables don’t have shielding to reduce interference. UTP cables reduce EMI through the way that the pairs are twisted inside the cable. Thus, UTP cables are lighter and thinner than STP cables.

 UTP vs STP: utp cable

UTP Cable Advantages and Disadvantages

First, easier to install and maintain. UTP cables contain no shields and they are thinner than STP cables, which is easier for cable installation and maintenance, particularly in limited space. While the shields of STP cables are quite fragile and rigid. If the shield suffered damage, cabling systems are likely to be affected by interference. What’s worse, it’s not easy to be repaired and needs special handling.

Second, more flexible. UTP cables are comparatively lighter. On one side, it makes the installation, transport, and maintenance work easier. On the other side, it makes UTP cables more suitable to be used in a narrow space.

Third, fewer cost. UTP cables are cheaper than STP cables. So are the related hardware. Besides, as mentioned above, UTP cables are easy to install and maintain. You don’t have to spend too much money on maintenance since UTP cables don’t rely on an outer shield. So they are beneficial to save your investment in installation and maintenance.

 UTP vs STP Cable Applications

Due to different characteristics, the two types of cables are used in a different environment.

STP cables are often used in situations nearby equipment causing EMI. For example, airports, medical centers, and factories have lots of machines that can produce interference, so STP cables are typically applied. STP cables are also useful when cables must be run next to fluorescent lights, microwave ovens or powerful motors. What’s more, STP cables can be used in outdoor settings. Some people connect outdoor surveillance cameras to STP wiring. In that way, the video feed can avoid the interference generated by vehicles and power lines. And it can stop criminals from using jammers to interrupt communications between cameras and indoor monitors or recording equipment.

UTP cables are suitable to be used in offices and homes. They are less expensive than STP cables. So if the interference or crosstalk is not your main concern, you are suggested to choose UTP cables for saving you cabling cost. Remember not to select UTP cables if your place is full of powerful magnetic fields which can slow down the network speed or cause the network failure. Therefore, you’d better carefully evaluate the potential sources of interference.

 UTP vs STP Cable: Which Will You Choose?

Choosing the right Cat5e/Cat5e/Cat6/Cat6a/Cat7 cable can improve your network performance and extend the life span of your equipment. Before making the decision, it’s important to get well known of STP and UTP cables. You must know exactly each one’s advantages and application areas. If you need better anti-interference capabilities, you can select STP cables. If you put the cost as the first factor, you may choose UTP cables. For both kinds of cables, you can find in FS.COM. Any question, please contact us via sales@fs.com.

Related Articles:
Ethernet Cable Jacket Ratings: CM vs. CMR vs. CMP
Quick View of Ethernet Cables Cat5, Cat5e And Cat6
How to Terminate and Install Cat5e, Cat6 Keystone Jacks?

Which Ethernet Cable Should You Choose?

Ethernet cable is one of the media transmitting signals to a home or business network place. Although the world is going wireless today, Ethernet cable is still used in many situations due to its advantages of fast speed, high reliability and security. But when you decide to buy the Ethernet cables, you will get confused about which category to choose. This article will discuss how to make your decision among these Ethernet cables like Cat5, Cat5e, Cat6 and Cat7.

Ethernet Cable Types

Cat5 Cable

Cat5 cable can handle 10/100 Mbps speed (Fast Ethernet) at the bandwidth up to 100 MHz. Cat5 cable is the oldest of these three kinds of cables. Over the years, Cat5 cable was used majorly in networking especially when pairing older routers, switches and other myriad networking devices. Nowadays it’s not used for too many installations. But it can support gigabit speeds if the cable is shorter sometimes.

Cat5 Ethernet Cable

The letter “e” means “enhanced”. As the name says, Cat5e is an improvement on Cat5 cable. Currently it’s the most popular cable used in new installations. It’s designed to support 1000 Mbps or gigabit speed. It can also greatly reduce the crosstalk. The crosstalk is the interference existing sometimes between wires that are sealed inside a cable. With this feature, Cat5e can better keep signals on different circuits or channels from interfering with each other. In a word, Cat5e cable can provide a faster, more reliable and steady network than Cat5. And Cat5e is also compatible with Cat5 cable.

cat5e-cable

Cat6 is an improvement over Cat5e. It has more sophisticated constructure and can support the speed up to 10 gigabit and the bandwidth up to 550 MHz over long distances. Cat6 is a good choice for those who want to install future-proof network. But Cat6 cable is not very good for the applications at home. This kind of cable is recommended for large organizations which deal with pretty bulk files.

cat6

Cat7 cable is designed to be used in Gigabit Ethernet and can support bandwidth up to 600 MHz. It greatly improves the capacity and reliability of Cat6. Another big advantage of Cat7 is the shielding of its twisted pairs, which significantly improves noise resistance. Cat7 is thought as the most durable and has a longer lifespan than Cat 5 and Cat 6. It’s the best choice for future use. But it’s comparatively expensive.

cat7-cable

Cat5 vs Cat5e vs Cat6 vs Cat7, Which Should You Choose?

First, you need to think about the question seriously how you like your current network speed. If you are satisfied with the current network speed, you don’t need to upgrade it. But if your hardware can handle 1 Gigabit and you are still using Cat5 cable, then you should better upgrade your Ethernet cables. You may choose Cat5e cable which is enough for your network needs. Or you can select Cat6 cable.

Second, you should know that network speed is not the same to internet speed. There is a chance that even though you upgrade your Ethernet cable, your internet speed won’t change too much. As it’s affected by many other factors. However, upgrading networking cables have a tremendous effect on file transfer speeds between computers. So to emphasize, when buying Ethernet cable, you should also consider your hardware compatibility.

Conclusion

From this article, you can find it’s not very hard to decide which kind of Ethernet cable to use. To make the right decision, it depends on your situations. Usually Cat5 or Cat5e cable is enough for home network use. If you transfer lots of data over your network, then you can upgrade your network cables from Cat5 to Cat5e or Cat6 to guarantee your network speed. But if you are satisfied with your current network speed, you don’t need to replace Cat5 with other cables. Of course, the cost is also an important factor. So if budget allows, Cat7 is a nice choice. At last, no matter what kind of cable, please notice that the Ethernet cable should be less than 100 metres in length to achieve higher efficiency.

Related Articles
Quick View of Ethernet Cables Cat5, Cat5e And Cat6
Running 10GBASE-T Over Cat6 vs Cat6a vs Cat7 Cabling?

How to Make Your Own Ethernet Cables?

Ethernet patch cables are indispensable for network. However, Ethernet patch cables are more expensive than bulk cables and the pre-terminated lengths are not always that you need. So it’s quite necessary to know how to wire Ethernet cable by yourself. This article will show you detailed steps of making your own Ethernet patch cable.

Materials You Need
Bulk Ethernet cable

Usually people will choose Cat5e cable. Cat5e cable is a little different from Cat5. It can handle data rate up to 1000Mbps. Cat5e is suitable for Gigabit Ethernet and experiences much lower levels of near-end crosstalk (NEXT) than Cat5. So in most applications, Cat5 has been superseded by Cat5e. Except Cat5e, you may also choose Cat6 cables which have better performance. Cat6 cable has twice the bandwidth of Cat5. It’s ideal for supporting 10 Gigabit Ethernet. Select the cable type and then buy the lengths of the cable you need.

RJ45 Connectors for Cat5e or for Cat6

RJ45 connectors are often used for telephone and network. RJ45 connectors include a variety of types for Cat 5e or Cat6, such as shielded, strain relief boots, 2 prong or 3 prong, etc. Whatever, you need to select the one suitable for your application. FS.COM provides plenty of RJ45 connectors meeting a high standard of safety quality.

rj45-connectors

RJ-45 Crimping Tool

RJ45 crimping tool is designed to quickly, strip, crimp and cut the wires in an easy operation. FS.COM supplies various types of high quality crimping tools. With this kind of tool, you can get precise and reliable terminations every time.

fs-crimping-tool

Steps for Wiring Ethernet Cable
Step 1. Strip Outer Sheath

Use your stripper on your crimping tool to strip 1 inch (2.5 cm) sheath from the end of the cable. Insert the cable into the stripper portion of the crimping tool and squeeze it tight. When squeezed, rotate the crimping tool around the cable a full 360°. At last, pull away and the sheath will be stripped. If you break the internal twisted wires by accident, just cut the broken wire and strip again. So when you measure the cable length, you should better leave spare inches in case things happen like this.

Step 2. Untwist and Arrange Wire

After stripping the sheath, you can find 8 color-coded wires inside. Then you need to untwist the internal wires and arrange them into a proper wiring scheme for RJ45 connector. There are two kinds of color codes standards: T568A and T568B. The color order is important to get correct. No matter which standards you choose, you should arrange the color-coded wires in the same order on both sides. Here recommend you T568B color-coded wiring. The following are about pins and colors used in T568B standards.

Pin1—White/Orange
Pin2—Orange
Pin3—White/Green
Pin4—Blue.
Pin5—White/Blue
Pin6—Green.
Pin7—White/Brown
Pin8—Brown

Step 3. Insert the wire into RJ45 connector

Before insert the wire into RJ45 connector, you need to cut down the wire to fit in the connector. Bring the wires together and cut them down in an even line with the cutting tool on the crimping tool. Then insert the wires into the connector in the right order. Ensure each wire fits into each groove in the connector. The wires should be inserted until the sheathing is inside the connector, just beyond the crimp portion of the connector.

insert-wire-into-rj45

Step 4. Crimp

Put the connector into the crimping tool carefully until the connector can’t go in any further. Squeeze the crimping tool very tightly and release. Then squeeze the the crimping tool again to make sure that all of the pins are pushed down on the connector. When finishing crimping, check that if all pins are all crimped down. If the pins are all down, tug the connector slightly to make sure that it is securely attached to the wire.

crimp-rj45

Step 5. Test

Before installing the cable, you should better take a test with an Ethernet cable tester. If the Ethernet cable doesn’t work, look closely at each end and see if you can find the problem. Usually the problem is caused because a wire ends up in the wrong place or one of the wires makes no contact or poor contact. You should also check if the color is in the right order. If the color order is wrong, then cut the end off and start again.

Summary

Sure, you can buy Ethernet cables from the store directly. But if you need to make your own cable with special lengths, then you are lucky to read this article. Remember that the Ethernet cable should be no more than 100 metres or 328 feet. Because the cable performance will be influenced by the over length. For bulk cables, RJ45 connectors, crimping tools, and network testers, etc., you can get all from FS.COM. Hope you can make your own Ethernet cable successfully.

How to Distinguish T568A and T568B of RJ45 Ethernet Cable Wiring?

The network cable can be easily found in our daily life. Ethernet network cable is color-coded if you look at its wires carefully. Color-coded wiring sequences exist as a cabling industry standard. Thus, cabling technicians can save a lot of time making cable termination on both ends by following others’ work without guessing or deciphering the function and connections of each wire pair. This article will tell T568A and T568B standards that the Ethernet cable jack wiring follows. T568A vs T568B differences are also mentioned.

What Are T568A and T568B Standards?

RJ45 conductor data cable contains 4 pairs of wires. Each one consists of solid colored wire and a strip of the same color. There are two wiring standards for RJ45 Ethernet cable wiring: T568A and T568B. T568A and T568B are the two wiring standards for RJ45 connector data cable. T568A was specified by TIA/EIA-568-A wiring standards in 1995. Later it was replaced by the TIA/EIA 568-B standard in 2002 and has been updated since. Both standards define the T568A and T568B pin-outs for using unshielded twisted pair cable and RJ45 connectors for Ethernet connectivity. These two standards and pin-out specification appear to be related and interchangeable. But they still have differences and should not be used interchangeably.

T568A vs T568B

RJ45 Colour-Coded Scheme

The RJ45 patch cable has 8 color-coded wires and the plugs have 8 pins and conductors. Eight wires are used as 4 pairs, each representing positive and negative polarity. The following figure shows the pin and colors used in the T568A and T568B standards.

rj45

Straight-through and Cross-over Connections

The wiring standards T568A and T568B are used to create a cross-over cable (T568A on one end, and T568B on the other end), or a straight-through cable (T568B or T568A on both ends).

Straight-through cables are used to connect computers to an Ethernet switch. The RJ45 cable uses only 2-pairs of wires: orange (pins 1, 2) and green (pins 3, 6). Pins 4, 5 (blue) and 7, 8 (brown) are not used. Straight-through cable connects pin 1 to pin 1, pin 2 to pin 2, pin 3 to pin 3, and pin 6 to pin 6.

straight-through-cable

A cross-over cable is used to network two computers without an Ethernet switch (hub). Cross-over cable connects pin 1 to pin 3, pin 2 to pin 6, pin 3 to pin 1 and pin 6 to pin 2. This kind of cable is used to connect TX+ (transmit) to RX+ (receive), and TX- to RX-. The unused pins are generally connected straight-through in both straight-through and cross-over cables.

cross-over-cable

T568A vs T568B: Which Standard Should You Choose?

Actually, there is no electrical difference between the T568A and T568B wire sequences. So it’s hard to tell which one is inherently better. The difference between the two is the position of the orange and green wire pairs. It is preferable to wire to T568B standards if there is no pre-existing pattern used within a building.

In fact, both standards are acceptable in most cases. You can use either one as long as you’re consistent. T568B is the standard followed by the majority of Ethernet installations in the United States for RJ45 color code. It is the more common standard used when cabling for businesses. While T568A is the majority standard followed by European and Pacific countries. It is also used in all United States government installations. So when you face the selection, you may make the decision on the country you work in and what types of organizations you install for.

Conclusion

T568A and T568B are the two wiring standards for Ethernet patch cable specified by TIA/EIA-568-A wiring standards document. Color-coding is part of the standards. If modifying the Ethernet cables improperly, signal loss of network connectivity can be caused. So please ensure all connectors and cables are modified in accordance with standards when you do cable terminations.

Related Article: 

Patch Cable vs. Crossover Cable: What Is the Difference?
Introduction of the RJ45 Interface
How to Terminate and Install Cat5e, Cat6 Keystone Jacks?

Products Used in the Physical Layer

The Physical Layer, as the Layer 1 of ISO OSI Systems communications model where the mechanical and electrical specifications of physical network interface are defined. The physical network interface is considered passive network elements because they do not generate or alter data units traveling across the network. Network elements defined by the Physical Layer include (among others): Network transport media (cables) and connectors.

Network Media Types

Network media types used in Data Centre today are copper and fibre optic cables.

The following copper cables are available: Cat 1 to Cat 5, Cat 5E, Cat 6, Cat 6a, Cat7 and Twinax cables. Twinax copper cable with two conductors in a coaxial cable, which is slowly wrapped around each other; originally designed to replace RS-232 and has been redesigned for high-speed computer applications under 10 meters.

Fibre optic cable utilize light for data transmission, rather than electrical current on copper cables, Fibre optic cables have many advantages, for example, the are many times lighter and have substantially reduced bulk, no pins, a smaller and more reliable connector reduced loss and distortion, and are free from signal skew or the effects of electro-magnetic interference.

Cable Connector Types

Copper cable connectors. Currently, there are two copper connector standards are in use, RJ-45 and MRJ-21.

RJ-45: The most popular Ethernet connector in use nowadays. MRJ-21: Used in Brocade’s netlron MLX product family, provides 1GbE connectivity of up to 6 ports by the RJ-45 patch panel or RJ-45 connectors. It is a high-density, high-speed copper cable.

Optical cable connectors. Optical cable connector structure can be divided into: FC,SC, ST, LC, D4, DIN, MU, the MTP,MPO and so on in various forms.

Transceivers Are Either Copper or Optical

Copper transceivers, copper medium usually does not require any transceivers, as they are a part of the interface module. However, few of Brocade’s products use a copper SFP with an RJ-45 female connector for 1 GbE connectivity over copper medium, or XFP copper transceiver for 10GbE connectivity over CX4 copper. Figure 1 is a 1000BASE-T Gigabit Ethernet Full Duplex RJ45 100m Copper SFP Optical Transceiver.

copper sfp

Figure 1. Copper SFP Optical Transceiver

  • XFP 10GBASE-CX4: Uses a CX4 connector to provide a connection to up to 15 meters over CX4 grade copper cable.
  • SFP 1000BASE-TX: Uses a RJ-45 connector to provide a connection to up to 100meters over Cat5e or higher copper cable.
Optical transceivers.

The following optical transceivers are available: (Figure 2 is a CWDM SFP 40km Single-Mode Optical Transceiver)

cwdm sfp

Figure 2. CWDM SFP Optical Transceiver

  • SFP: Small form-factor Pluggable. Supports 100Mbps and 1Gbps Ethernet.
  • SFP+: Small Form-factor Pluggable Plus. Looks are physically identical to the SFP port but support higher speeds. Supports 10Gbps Ethernet. Might also support SFP transceivers.
  • XFP: 10 Gigabit Small Form-factor Pluggable. Supports 10Gbps Ethernet.
  • XENPAK: XENPAK transceiver is a hot-swappable I/O devices that plug into 10-Gigabit Ethernet module ports. The XENPAK transceiver is available in either optical or copper interfaces. It is used in typical router line card applications, storage, IP network and LAN.
  • X2: X2 transceiver is a standardized form factor for 10 Gb/s fibre optic transceivers that is used for data transfer rates from 10.3 Gb/s to 10.5 Gb/s. X2 transceiver is used in datacom optical links only (not telecom), and they are smaller than old generation XENPAK transceiver.
  • GBIC) Transceiver: A gigabit interface converter (GBIC) transceiver can send and receive data, which is to digitally convert media between a gigabit Ethernet network and a separate fibre optic based network.

SFP+ Twinax cables are copper cables with two SFP+ transceivers attached on either end. They are also known as Direct Attach Cables (DAC). Using SFP+ Twinax cable is significantly cheaper than connecting devices using two 10Gbps fibre optic transceivers over fibre cable. There are two types of SFP+ Twinax cables: active and passive. SFP+ Twinax cable provided by fs.com is available in lengths of 1m, 2m, 3m, 5m.

In addition, all those copper or optical products used in the Physical layer can be found in fs.com.