Cat5e VS Cat6 VS Cat7 VS Cat6a: Which One to Choose?

In the era of information explosion, almost everyone can get access to the Internet, and almost everywhere is loaded with network and Ethernet cables. But you may be unaware of the fact that Ethernet cables, though look like the same, actually have different categories. Here, this post will introduce currently available cables in the market (Cat5e, Cat6, Cat6a and Cat7) and compare the differences. May it help with your choice in selecting the appropriate category of cable to support your network.

Cat5e VS Cat6

Both of Cat5e and Cat6 cables are twisted pair cables, performing the same job. They all have the same style RJ-45 plug, and it is capable of plugging into any Ethernet jack on a computer, router, or other similar devices. Despite all the similarities, they do have some differences as shown in the following chart:

Features/Categories Cat5e Cat6
Speed 1000Mbps 10 Gbps over 37-55 meters  of cable
Frequency 100MHz 250 MHz
Maximum Cable Length 100 meters 100 meters for slower network speeds (up to 1,000 Mbps) and higher network speeds over short distances. For Gigabit Ethernet, 55 meters max
Standard Gauges in Conductors 24-26 AWG wire 22-24 AWG wire
Performance Cat6<Cat5e (interference or crosstalk) <Cat5 Lower crosstalk, return loss and insertion loss, higher signal-to-noise ratio

As we can see from the chart, Cat5e (Cat5 Enhanced) offers gigabit Ethernet up to 100 meters, and can support 1000Mbps speeds at 100MHz. Cat6 can provide up to 10 gigabit speeds at 250MHz. Both Cat5e and Cat6 cable allow lengths up to 100 meters, but Cat6 has a lower max length (55 meters) when used for 10GBASE-T. The main difference between Cat5e and Cat6 lies in the transmission performance. Cat6 has an internal separator that lowers interference or near end crosstalk (NEXT). It also improves equal level far end crosstalk (ELFEXT), return loss and insertion loss compared with Cat5e. As a result, Cat6 has a higher signal-to-noise ratio than Cat5e.

Cat6 VS Cat6a VS Cat7

Features/Categories

Cat6

Cat6a

Cat7

Speed

10 Gbps with distance of 37-55 meters

10 Gigabit Ethernet with distance up to 100 meters

10 Gbps with distance up to 100 meters

Connector Type

RJ45

RJ45

GG45

Frequency

250 MHz

500 MHz

600 MHz

Performance

Cat6 (crosstalk) >Cat6a

Cat6>Cat6a (crosstalk) >Cat7

least amount of crosstalk

Standard

TIA/EIA recognition and standards

TIA/EIA recognition and standards

No TIA/EIA recognition

Best Use

households

households

multiple applications or offices

As is shown in this chart, Cat6 supports speeds up to 10 Gigabit Ethernet and frequencies of up to 250 MHz, and can be achieved with distance of 33-55 meters. Cat6a can support bandwidth frequencies of up to 500 MHz, twice the amount of Cat6 cable, and can also support 10Gbps like its predecessor. While Cat7 supports bandwidth frequencies of up to 600 MHz. It also supports 10GBASE-T Ethernet over the full 100 meters like Cat6a. Besides, it features improved crosstalk noise reduction compared to Cat6 and Cat6a. Cat5e, Cat6 and Cat6a are all equipped with RJ45 connectors but Cat7 requires special GigaGate45 (CG45) connectors. The Telecommunications Industry Association (TIA) and Electronic Industries Alliance (EIA) have set standards for wires and cabling, which help standardize installation and performance. At this time, Cat6 and Cat6a are recognized by TIA/EIA standards, but Cat7 is not. With respect to best application, Cat6 and Cat6a are suitable for home use. On the contrary, if you’re running multiple applications, or using it in a business environment, you’d better choose Cat7 cables because these can support multiple applications with fewer errors and less crosstalk.

Conclusion

This article reveals some comparisons between Cat5e, Cat6, Cat6a and Cat7, covering speed, frequency, performance, etc. They all have different features, performances and applications. So if you are considering installing Ether cable, be sure to take these factors into consideration, and opt for the one suited to your need most.

OM4 vs. OM5: What’s the Difference?

As the demand for bandwidth, new transmission media must be developed to meet the requirements of users. The latest in optical transmission media is called OM5 fiber. To help you use this advanced fiber to its greatest advantage, this paper describes the basis of OM5 fiber, and highlights the key differences with OM4.
OM5

What Is OM5 Fiber?

According to the ISO/IEC 11801, OM5 fiber specifies a wider range of wavelengths between 850nm and 953nm. It was created to support short wavelength division multiplexing (SWDM), which is one of the many new technologies being developed for transmitting 40Gb/s and 100Gb/s.

In June 2016, ANSI/TIA-492AAAE, the new wideband multimode fiber standard, was approved for publication. And in October of 2016, OM5 was announced as the official designation for cabling containing WBMMF (Wide Band Multimode Fiber) by ISO/IEC 11801. From then on, OM5 may be a potential new option for data centers that require greater link distances and higher speeds.

OM4 vs. OM5: What’s the Difference?

Until recently, OM1 and OM2 fiber can no longer support 25 Gbps and 40 Gbps data transmission speeds, so OM3 and OM4 were the main choices for multimode fiber to support 25G, 40G and 100G Ethernet. However, it’s becoming more costly for optical fiber cable to support next-generation Ethernet speed migration as bandwidth requirements increase. At this time, the present OM5 extends the benefits of this multimode fiber in data centers. Here is the comparison between OM4 and OM5:

OM4 fiber has been on the market since 2005, which is completely backward compatible with OM3 fiber and shares the same aqua jacket. OM4 fiber is a 50µm laser-optimized multimode fiber with extended bandwidth. It allows 10G link distances of up to 550 meters and offers an Effective Modal Bandwidth (EMB) of 4700 MHz-km.

OM4-VS.-OM5

By comparison, OM5 is also a 50µm laser-optimized multimode fiber and uses VCSEL lasers, which enable optimal support of emerging SWDM applications. But the key difference is that EMB is specified only at 850 nm for OM4 at 4700 MHz-km, while OM5 EMB values are specified at both 850 nm and 953 nm and the value at 850 nm is greater than that of OM4. Therefore, OM5 fiber offers users longer length distances and more choices in optical fiber. In addition, TIA has specified lime green as the official cable jacket color for OM5, while OM4 is aqua jacket. And OM4 is designed for 10Gb/s, 40Gb/s, and 100Gb/s transmission, but OM5 is designed for 40Gb/s, and 100Gb/s transmission which reduces the fiber counts for high speed transmissions.

What’ more, OM5 can support four SWDM channels, each carrying 25G of data to deliver 100G Ethernet using a single pair of multimode fibers. Besides, it is fully compatible with OM3 and OM4 fiber. OM5 is available globally for installations in multiple enterprise environments, from campuses to buildings to data centers. In a word, OM5 is a better choice than OM4 on transmission distance, speed and cost.

Conclusion

OM5 fiber provides next-generation multimode fiber performance for today and tomorrow’s high speed applications. With its significantly higher bandwidth, it can be assured that multimode fiber will continue to provide the most cost effective solutions for short reach applications in data centers and LANs. OM5 precisely meets the demands, and it will be your preferable choice for your data centers.

Things You Should Know About Wireless Access Point

A wireless access point (WAP or AP) is a hardware device or configured node on a local area network (LAN) that allows wireless capable devices and wired networks to connect through a wireless standard, including Wi-Fi or Bluetooth. A wireless access point acts as a hub of traditional wired network, and a bridge connecting wired and wireless network. An access point connects to a wired router, switch, or hub via an Ethernet cable, and projects a Wi-Fi signal to a designated area. Wireless access points may be used to provide network connectivity in office or family environments, covering dozens of meters to hundreds of meters. Most APs use IEEE 802.11 standards.

wireless-routers-function

Types

Wireless access points can be divided into two types: Simplex AP and Extended AP.

A simplex AP functions as a wireless switch, only transmitting radio signal. When a simplex AP works, it transmits network signal through twisted-pair and converts electrical signal into radio signal after compiling, forming the coverage of Wi-Fi shared Internet access.

An extended AP, commonly known as a wireless router, is mainly applied to Internet access and wireless coverage. Through a wireless router, the share of Internet connection in home Wi-Fi sharing network, as well as wireless shared access of ADSL (Asymmetrical Digital Subscriber Loop) and community broadband can be realized. From security, an access point is different from a wireless router, in that it does not have firewall functions, and will not protect your local network against threats from the Internet.

Difference Between Access Point and Wireless Router

From the appearance, they look almost the same and hard to tell, but they do have subtle differences. A simplex wireless AP usually has a wired RJ45 network port, a power interface, configuration port (USB port or configuration via WEB interface), and fewer indicator lights; while a wireless router has four more cable front-end ports. In addition to a WAN port for connecting higher-up network equipment, four LAN ports can be wired in internal network, and a router has more indicator lights than AP.

wifi-router-vs-access-point

Functions

AP plays the important role of relay, which amplifies the wireless signal between two wireless points, and enables remote clients to receive stronger wireless signal. For example, if an AP is put in place A, and there is a client in place C which is 120 meters away from place A, it can be seen that the signal from A to C has been weakened a lot. If an AP is put in place B (60 meters between A and C) as a relay, the signal of client in C will be effectively enhanced, and the transmission speed and stability can be ensured.

wireless-access-points-function

Another important function of AP is bridging, which is to connect two endpoints and achieve data transmission between two wireless AP. AP is also bridged to connect two wired LANs. For example, there is a wired LAN made up of 15 computers in place A, and wired LAN made up of 25 computers in place B, but the distance between A and B is very far, over 100 meters, and there is no possibility through wired connection, then how to connect the two LANs? AP is needed in both place a and place b to bridge them so that data transmission can be achieved.

The last function is “master-slave mode”, which can achieve one point to multipoint connection. “Master-slave mode” is widely used in connection between wireless LAN and wired LAN. For example, place A is a wired LAN made up of 20 computers, place B is a wireless LAN made up of 15 computers, and B has a wireless router. If A wants to be connected to B, an AP is needed in A. Initiate the “master-slave mode” and connect AP to the router in A, so that all the computers in A can connect to B.

Summary

Most businesses and homes today rely greatly on the wireless access point (WAP) for data transmission and communication. Wireless access point does make our life more convenient. These devices avoid a mess of wired Ethernet cables. Besides, a company, family or school often has to install wired cables through walls and ceilings, while wireless network needs no cables, which contributes great mobility to users.

How to Get 40/100G Connectivity in Your Data Center?

The demand for network growth is rapidly increasing, which is due to the massive amount of storage needed for high bandwidth applications. Large growth hence spurs the requirements for expansion and scalability in the data center. Cabling infrastructures must evolve to provide reliability, manageability and flexibility. Obviously, the conservative 2-fiber transmission is not enough to catch up with the speed. And 12 or 24-fiber 40/100G Ethernet migration is quickly becoming a matter of survival. This article offers cabling solutions for cost-effective and simplified migration for 40/100G within the data center.

Introduction to 40/100G Ethernet

40G and 100G Ethernet employ parallel optics. Parallel optics transmission, compared to traditional serial transmission, uses an optic module interface where data is simultaneously transmitted and received over multiple fibers. For the 40GE transmission, 4 x 10G on 4 fibers per direction and 10 x 10G on 10 fibers per direction for the 100GE. Which ushers the need for the high quality and low loss multimode MTP connectors and assemblies.

How to Get 40G Connectivity?
1). 10G to 40G Connection

Migration from 10G to 40G system utilizes 40G MTP/MPO breakout cables, with an MTP/MPO connector on one end and four duplex LC connectors on the other end. The IEEE ratified the 40GBASE-SR4 (MPO/MTP interface) standard that uses 4 lanes at 10G SFP+ (LC interface) per lane over multimode fiber for a total of 8 fibers.

Parallel optics 40GBASE-SR4 uses 8 out of 12 MTP/MPO interfaces fibers transmitting 4 duplex channels (4 for transmit and 4 receive), as shown in the following picture. QSFP+ to SFP+ breakout cable is 8-fibers MTP to LC breakout assembly.

10G-40G migration solution 1

2). 40G to 40G Connection

As for data transmission between two 40G switches, 40G QSFP+ SR4 transceivers are generally adopted, transmitting signals over four duplex 10G lanes (4 transmit and 4 receive). A 12-fiber MTP/MPO trunk are involved, with 8 out of 12 fibers used to achieve 4 duplex signals transmission. And MTP/MPO adapter panels can be installed easily to make the next adaptation, as the following picture indicates.

10G-40G migration solution 2

How to Get 100G Connectivity?
1). 10G to 100G Connection

Migrating from 10G to 100G still utilizes 100G MTP/MPO breakout cable, the IEEE ratified the 100GBASE-SR10 (MTP/MPO interface) standard that uses 10 lanes at 10G SFP+ per lane over multiple fiber for a total of 20 fibers. Parallel optics 100GBASE-SR10 uses 20 out of 24 MTP/MPO interface fibers transmitting 10 duplex channels.

10G-100G migration solution 1

2). 100G to 100G Connection

100G connectivity can be achieved through ten 10G SFP+ transceivers. SFP+ transceiver operates on legacy duplex 10G lanes, thus taking full advantage of the existing network infrastructure. With a 24-fiber MTP/MPO trunk cable, of which 20 out of the 24 fibers are used to make duplex 10×10G transmission.

10G-100G migration solution 2

We can also get 100G to 100G connectivity via MTP/MPO assemblies: simply use the 24-fiber MTP/MPO interface trunk cable or 2×12-fiber MTP/MPO interface trunk cable. As shown in the following picture.

40G-100G migration solution 1

Conclusion

With the rapid increase in bandwidth consumption, the migration from 10G to 40G or 100G is inevitable. The economics of cost per port per 10Gbps is much more favorable for a 40GBASE-SR4 and 100GBASE-SR10 network. All the transceivers and cabling assemblies presented in the solutions are available in FS.COM. For more details, please visit www.fs.com or contact us via sales@fs.com.

How to Save Cost for 500Gbps Metro Network Over Long Distance?

Increasing bandwidth has always been the most important task of telecom engineers. Through decades of research and engineering effort, 40Gbps and 100Gbps solutions have been used for network applications. But 40G and 100G transceivers can’t support too much long distance (QSFP-40G-ER4 for 40 km, QSFP-100G-LR4 for 10 km). How to extend the 500Gbps link to thousands of kilometers in Metro network within limited budget?

Save Fiber Cost–500Gbps Over Single Fiber Cable

Fiber cable cost takes a certain percentage in the whole network budget. Point to point connection needs many cables, while WDM technology take well care of this issue. In a metro network, usually multiple 10Gbps signals are transmitted by the use of DWDM Mux/Demux over a single fiber cable, which can save lots of money on multiple fiber cables and cable management issues. Then how to save cost to transmit 500Gbps signals over single fiber cable?

It sounds unbelievable. But we have the cost-effective solution. As we know, it will cost too much to replace all the current network system for upgrading to higher data rate. To save cost for increasing bandwidth, some producers add an extra port on DWDM Mux/Demux and that is 1310nm or 1550nm port. This port supports 1310nm or 1550nm transceiver. With such port, you can add 1G/10G/40G/100G to the existing DWDM network. For instance, we use 40-channel C21-C60 dual fiber DWDM Mux/Demux with 1310nm port and 1310nm band port for 1G/10G/40G/100G “grey” light. Plug 10G DWDM SFP+ transceivers into 40 channels, the overload is 400Gbps. Once plugging a 1310 40G QSFP+ LR4/ER4, then the total link reach up to 440G (400G + 40G). If install a 100G QSFP28 LR4 transceiver into 1310 port, the whole transport will be 500Gbps (400G + 100G). See this solution realize the goal of saving cost to run such huge network load over a single fiber.

500g dwdm network

40ch dwdm mux-demux

Extend 500G Transmission Distance

Since 500G signals can be transmitted over a single fiber cable, we have another issue to be solved. 500G transmission distance is needed far more than few kilometers in real life, maybe thousand of kilometers. How to extend the transmission distance?

According to IEEE standard, LR4 and ER4 transceivers can support the reach of 10 km and 40 km in the in ideal conditions, not considering fiber loss or connector loss. To extend 500Gpbs transmission distance, we need SOA (Semiconductor Optical Amplifier) and EDFA (Erbium Doped Fiber Amplifier). Add an SOA to support 40G/100GBASE-LR4 transceiver (over 1310 nm). The SOA is used to amplify incoming (Rx) signal on the receiving side of the link. So that the distances can reach up to 60 km. In 10Gbps DWDM networks, the signal transmission distance can be extended to hundreds of kilometers by the use of and EDFA (Erbium Doped Fiber Amplifier).

500g dwdm network-1

Recommended DWDM Solutions for 500Gbps Metro Network
ID# FS Part Number Description
35887 40MDD-1RU-A1-FSDWDM 40 Ch 1RU Duplex DWDM MUX DEMUX C21 to C60 with 1310nm Port and Monitor Port
14491 DWDM-SFP10G-40 10GBASE 100GHz DWDM SFP+ 40km, LC Duplex Interface, C21 to C60
31533 DWDM-SFP10G-80 10GBASE 100GHz DWDM SFP+ 80km, LC Duplex Interface, C21 to C60
14599 DWDM-XFP10G-40 10GBASE 100GHz DWDM XFP 40km, LC Duplex Interface, C21 to C60
14650 DWDM-XFP10G-80 10GBASE 100GHz DWDM XFP 80km, LC Duplex Interface, C21 to C60
35208 QSFP-LR4-40G 40G QSFP+ LR4 1310nm 10km, LC Duplex Interface
35210 QSFP-ER4-40G 40G QSFP+ ER4 1310nm 40km, LC Duplex Interface
35014 CFP2-LR4-100G 100G CFP2 LR4 1310nm 10km, LC Duplex Interface
35192 FS-SOA-G10 10dB Gain 1310nm Semiconductor Optical Amplifier
31366 EDFA-BAO22 20dBm Output C-band 40 Channels 26dB Gain Booster EDFA

Summary

DWDM technology is very necessary to extend Metro Network reach. In this 500Gpbs Metro network, I have introduced very detailed cost-effective solutions. Remember all the indispensable DWDM equipment such as DWDM transceivers, DWDM Mux/Demux, EDFA, etc. For more information, please visit the site about FS.COM Long Haul DWDM Network Solution.

Related articles:

How to Extend 40G Connection up to 80 km?
Economically Increase Network Capacity With CWDM Mux/DeMux

Which 40G QSFP+ Transceivers Can Be Used for 4x10G?

Since the overwhelming growth in data traffic, many data centers are loaded with 10G and 40G based Ethernet switches for 10G to 40G migration. 40G switches allow the configuration of 40G port to act as one port or break out into four individual ports. To get easy 10G/40G migration, we should better select 40G QSFP+ transceivers which can break out as 4x10G connectivity. Among so many versions of 40G QSFP+ transceivers including QSFP-40G-SR4, QSFP-40-CSR4, QSFP-40G-LR4, QSFP-40G-ER4, etc., which 40G QSFP+ transceiver can be used for 4x10G?

QSFP-40G-SR4/CSR4 for 4x10G

40G short distance multimode transceivers are interfaced with 12-fiber MTP/MPO, such as 40G SR4, CSR4. To know why these 40G QSFP+ modules can be used for 4x10G, let’s see how QSFP-40G-SR4 work? First, 4 electrical input signals of 10G converted into parallel optical signals are sent from the transmitter over 4 parallel fiber strands. Then the parallel optical signals are converted into parallel electrical signals by the use of a photo detector array and transmitted to the receiver over another 4 parallel fiber strands. QSFP-40G-SR4 needs 8 fibers to transmit and receive signals. QSFP-40G-SR4 transceivers are interfaced with 12-fiber MTP/MPO. Therefore, QSFP-40G-SR4 and QSFP-40G-CSR4 transceivers can be easily broken down to 4x10G connections. Each 10G signal lane of QSFP-40G-SR4 is compliant to IEEE 10GBASE-SR specifications. And this 10G/40G connection can be achieved by using an MTP-LC harness cable or MTP cable and MTP-LC breakout patch panel to connect the QSFP-40G-SR4 and four 10GBASE-SR modules.

QSFP-SR4-4x10G

Can QSFP-40G-LR4/ER4 Be Used for 4x10G?

QSFP-40G-LR4 transceivers apply CWDM (Coarse Wavelength Division Multiplexing) technology. From the transmitter side, 4 input electrical signals of 10G are converted into 4 CWDM optical signals by a driven 4-wavelength distributed feedback (DFB) laser array. Then 4 CWDM signals are multiplexed to a singlemode fiber for 40G optical signal transmission. On the receiver side, the receiver accepts 40G CWDM optical signals input and demultiplexes them into 4 individual 10G optical data streams with different wavelengths. Multiplexing and demultiplexing of the four wavelengths are managed in the device. The 40 Gigabit Ethernet signal is carried over four wavelengths on a pair of singlemode fibers. The duplex fibers are used for bi-directional transmission. QSFP-40G-LR4 and QSFP-40G-ER4 are interfaced with duplex LC connector. Therefore, we can’t split QSFP-40G-LR4 or QSFP-40G-ER4 to 4 individual duplex SMF fibers to route them to 4 separate 10G transceivers by simple optical rerouting.

QSFP-LR4-4x10G

But if you insist to split the 40G into four 10G streams using QSFP-40G-LR4 or QSFP-40G-ER4 modules, how to achieve that connection? Then you need a simple multiplexer/demultiplexer which split the four wavelengths on duplex fibers into 4x10G signal in four different fibers. With such equipment, the QSFP-40G-LR4 or QSFP-40G-ER4 outputs can be physically broken down from one duplex fiber into four duplex fibers so that each of the wavelengths is transmitted in four different fibers (As the following figure shows).

QSFP-LR4-4x10G-cable

How About QSFP-40G-PLRL4?

From the above content, you may get an inclusion that multimode 40G QSFP+ transceivers can be directly used as 4x10G while singlemode 40G QSFP+ transceivers can’t. However, you ignore one singlemode transceiver QSFP-40G-PLRL4. This 40G QSFP+ transceiver connects with 12-fiber MTP/MPO patch cable though it’s designed for long distance transmission. Similar to QSFP-40G-SR4, QSFP-40G-PLRL4 also needs 8 fibers to transmit and receive signals. So you can easily get 10G/40G singlemode connection applying QSFP-40G-PLRL4.

Summary

Some data centers may face the issue of migration from 10G to 40G. Except the switch, you also need to know 40G QSFP+ transceivers well especially what kind of 40G QSFP+ transceivers can be used for 4x10G connectivity. In this article, you can see 40G QSFP+ transceivers with MTP/MPO interface can achieve that connection by simple optical routing. As to 40G QSFP+ transceivers with duplex LC interface, you need spare equipment for multiplexing/demultiplexing. For 40G to 4x10G solutions, you can find your desired one from FS.COM.

Related article: How to Extend 40G Connection up to 80 km?

QSFP+ to 4xSFP+ AOC and QSFP+ MTP Breakout Cable Solution

How to Select Fiber Patch Cable for 40G QSFP+ Modules?

How to Extend 40G Connection up to 80 km?

As 40G connectivity is accelerating, many data centers prepare to migrate from 10G to 40G. But the link distance between 10G and 40G switches is a big challenge. This article can help you extend 40G connection distance.

Current 40G QSFP+ to 4x10G Connection—Max 10 km

As we know, 40GBASE-SR4 QSFP+ is designed for short distance of up to 150m connection. 40GBASE-PLR4 QSFP+ can support long distance link of up to 10 km. Both 40G QSFP+ modules are interfaced with 12-fiber MTP/MPO and can break out into 4x10G connection. To build 10G-40G connection, for instance, using singlemode 8-fiber MTP-LC harness cable to connect 40GBASE-PLR4 QSFP+ and 4x10G SFP+ modules. As the direct connection distance between two 40GBASE-PLR4 QSFP+ optics can reach at most 10km, it’s easy to understand that the connection between 10G and 40G may be shorter. However, we provide a method to extend 40G connection to 80km distance. Continue to read this article and find the answer.

10km max

Equipment for Extending 40G QSFP+ Connection

To extend 40G QSFP+ connection distance, we have to use WDM transponder OEO (Optical-Electrical-Optical) repeater. OEO repeater allows connection between fiber to fiber Ethernet equipment, serving as fiber mode converter, or as fiber repeater for long distance transmission. It can also function as CWDM/DWDM optical wavelength conversion. Now we will use a multi-service transport system, including a hot-swappable plug-in OEO card which only occupies 1 slot. The other space can be left for holding more cards such as DCM, EDFA, OLP. On the left side, there is a card for centralized network management.

WDM transponder oeo

This is a 4-channel multi-rate WDM transponder with an OEO-10G card containing 8 SFP/SFP+ slots and can support up to 11.3G rate. The OEO card can convert 1G~11.3 Gbps Ethernet signals into a corresponding wavelength in CWDM and DWDM network infrastructures. Transmission distance can reach 80 km.

Except WDM transponder OEO repeater, we still need DWDM Mux/Demux and DWDM SFP+ to extend the distance to 80 km. DWDM Mux/Demux is to combine 4x10G signals of different wavelengths on one single fiber so that it’s the best solution to increase network capacity and save cost. Here we use 40-channel C21-C60 dual fiber DWDM Mux/Demux. So we can choose suitable 10G DWDM SFP+ modules 80km transceiver between the wavelengths of C21 and C60.

For your reference, the equipment for 40G connection extension mentioned above are from FS.COM. You can select those of other specifications according to your own needs.

Equipment Details
Fiber Transceiver 40GBASE-PLR4 QSFP+ 1310nm 10km MTP/MPO Transceiver
Generic Compatible 10GBASE-LR SFP+ 1310nm 10km DOM Transceiver
C21-C60 DWDM SFP+ 80km DOM Transceiver
Transponder Repeater 4-channel WDM transponder OEO repeater
DWDM Mux/Demux 40 Channels C21-C60 Dual Fiber DWDM Mux Demux with Monitor Port, 3.0dB Typical IL
Extend 40G QSFP+ Connection to 80 km

Install 40GBASE-PLR4 QSFP+ into QSFP+ port of a switch and 4 10GBASE-LR SFP+ into the Ethernet ports of the WDM transponder OEO repeater. Then plug a singlemode 8-fiber MTP-LC harness cable to connect 40GBASE-PLR4 QSFP+ and 4 SFP+ modules. Because of the OEO repeater function, 4x10G Ethernet signals are converted into corresponding wavelengths in DWDM network infrastructure. Then install 4 x 10G DWDM SFP+ transceivers into other four ports of OEO repeater. Next step is to connect DWDM SFP+ modules on the OEO repeater and DWDM Mux/Demux by using LC duplex patch cables. In this way, 40G QSFP+ distance can be extend up to 80 km.

40G-80km

Conclusion

10 km transmission distance is not the limit of 40G to 4x10G connection. From this article, you can extend 40Q QSFP+ to 80 km by mainly applying WDM transponder OEO repeater, DWDM Mux/Demux and 10G DWDM SFP+. If need to break your network distance limit, please visit our site www.fs.com or contact us via sales@fs.com.

Related articles:

Economically Increase Network Capacity With CWDM Mux/DeMux
Check out All CWDM Transceiver Modules
User Guide for CWDM MUX/DEMUX

Difference Between QSFP, QSFP+, QSFP28

SFP is short for small form factor. It refers to fiber optic transceivers supporting 1Gbps data rate. Except SFP, current market is full of various types of fiber optic transceivers, such as QSFP, QSFP+ and QSFP28. At the first sight, these transceiver modules are very similar. But actually, they have big differences. To know the difference clearly is good to make the right choice for your network connection. So what are the differences between QSFP,  QSFP+, QSFP28?

QSFP vs QSFP+

“Q” of QSFP means quad (4 channels). QSFP is a compact, hot-pluggable transceiver used for data communications. The QSFP specification supports Ethernet, Fibre Channel, InfiniBand and SONET/SDH standards with different data rate options. QSFP transceivers support the network link over singlemode or multimode fiber patch cable. QSFP modules are commonly available in several different types: 4x1G QSFP, 4x10G QSFP+, 4x28G QSFP28. From this side, QSFP vs QSFP+ vs QSFP28 all share the same small form-factor. literally QSFP uses 4x1G lanes and was only found in some FC/IB contexts.

While QSFP+ transceivers, evolving from 4x1G lanes (QSFP) to 4x10G lanes, are designed to support 40G Ethernet, Serial Attached SCSI, QDR (40G) and FDR (56G) Infiniband, and other communications standards. QSFP+ standard is the SFF-8436 document which specifies a transceiver mechanical form factor with latching mechanism, host-board electrical-edge connector and cage. QSFP+ modules integrates 4 transmit and 4 receive channels plus sideband signals. Then QSFP+ modules can break out into 4x10G lanes. QSFP+ modules are used to connect switches, routers, Host Bus Adapters (HBAs), enterprise data centers, high-performance computing (HPC) and storage. But some may think QSFP as the same with QSFP+, especially in the Ethernet world.

QSFP+ vs QSFP28

QSFP+ and QSFP28 differs in “28” as the name says. QSFP28 is a hot-pluggable transceiver module designed for 100G data rate. QSFP28 integrates 4 transmit and 4 receiver channels. “28” means each lane carries up to 28G data rate. QSFP28 can do 4x25G breakout connection, 2x50G breakout, or 1x100G depending on the transceiver used. While QSFP+ supports the data rate of 40G, 4 channels for transmitting and 4 channels for receiving, each lane carrying 10G. QSFP+ can break out into 4x10G or 1x40G connection.

qsfp28 vs qsfp+

Usually QSFP28 modules can’t break out into 10G links. But it’s another case to insert a QSFP28 module into a QSFP+ port if switches support. At this situation, a QSFP28 can break out into 4x10G like a QSFP+ transceiver module. One thing to note is that you can’t put a QSFP+ transceiver into a QSFP28 port to avoid destroying your optics.

FS.COM QSFP+ vs QSFP28

Compatible with major brands such as Cisco, Juniper, Arista, Brocade, etc., FS.COM QSFP+ and QSFP28 modules can support both short and long-haul transmission. Here lists our generic QSFP+ and QSFP28 modules in the following table.

FS.COM Generic QSFP+
Model Description Price List In Stock
17931 40GBASE-SR4 QSFP+ 850nm 150m MPO Transceiver for MMF US$ 49.00 1061 pcs
34917 40GBASE-PLRL4 QSFP+ 1310nm 2km MPO Transceiver for SMF US$ 220.00 49 pcs
24422 40GBASE-LR4 and OTU3 QSFP+ 1310nm 10km LC Transceiver for SMF US$  340.00 50 pcs
34912 40GBASE-CSR4 QSFP+ 850nm 400m MPO Transceiver for MMF US$  70.00 141 pcs
35205 40GBASE-UNIV QSFP+ 1310nm 2km LC Transceiver for SMF&MMF US$  340.00 18 pcs
34913 40GBASE-LR4L QSFP+ 1310nm 2km LC Transceiver for SMF US$ 340.00 44 pcs
48721 40GBASE-SR Bi-Directional QSFP Module for Duplex MMF US$  300.00 106 pcs
35209 40GBASE-PLR4 QSFP+ 1310nm 10km MPO Transceiver for SMF US$  380.00 34 pcs
35211 40GBASE-ER4 and OTU3 QSFP+ 1310nm 40km LC Transceiver for SMF US$  1,500.00 40 pcs
39986 40GBASE-LR4 CFP 1310nm 10km SC Transceiver for SMF US$  800.00 Available
FS.COM Generic QSFP28
Model Description Price List In Stock
35182 Generic Compatible QSFP28 100GBASE-SR4 850nm 100m Transceiver US$ 270.00 38 pcs in stock
65216 Generic Compatible QSFP28 100GBASE-PSM4 1310nm 500m Transceiver US$ 750.00 26 pcs in stock
65214 Generic Compatible QSFP28 100GBASE-CWDM4 Lite 1310nm 2km Transceiver US$ 1,350.00 26 pcs in stock
65215 Generic Compatible QSFP28 100GBASE-CWDM4 1310nm 2km Transceiver US$ 1,350.00 26 pcs in stock
39025 Generic Compatible QSFP28 100GBASE-LR4 1310nm 10km Transceiver US$ 2,800.00 Available
Conclusion

The difference between QSFP vs QSFP+ vs QSFP28 has been stated clearly in this article. Though QSFP is thought as QSFP+, when talking about 40G, actually we mean QSFP+. QSFP+ vs QSFP28 mainly differs in data rate and breakout connection. So you must be sure what you need is 40G QSFP+ or 100G QSFP28 for high density applications, especially when connecting with 10G SFP+.

Which One to Select, GLC-LH-SM Vs GLC-LH-SMD?

Among so many different Cisco SFP modules, sometimes you may feel confused. Because the differences of some SFP modules are tiny, for instance, Cisco SFP GLC-LH-SM and Cisco SFP GLC-LH-SMD. If you can’t understand the the difference between these two Cisco SFP modules, you don’t know which one to select for your Cisco switch. This article is gonna explain GLC-LH-SM vs GLC-LH-SMD.

Cisco SFP GLC-LH-SM

Cisco SFP GLC-LH-SM is a hot swappable transceiver module that transfers the data rate of 1 Gbps. It’s compliant with IEEE 802.3 1000BASE-LX/LH standard. It supports the link lengths up to 10 km over single mode fiber patch cable at a wavelength of 1310 nm. It can be also applied for short network connection over multimode fiber cable (550 m).
Other features:
Interface: LC duplex
Tx power: -9.5 ~ -3dBm
Receiver Sensitivity < -23dBm
Commercial Temperature Range: 0 to 70°C (32 to 158°F)
DOM Support: No

Cisco SFP GLC-LH-SM

Cisco SFP GLC-LH-SMD

Cisco SFP GLC-LH-SMD is a hot pluggable transceiver module running the data rate at 1 Gbps. This SFP is interfaced with 1000BASE-LX/LH ports. And it can support both single mode and multimode applications.
Other features:
Interface: LC duplex
Tx power: -9.5 ~ -3dBm
Receiver Sensitivity < -23dBm
Commercial Temperature Range: 0 to 70°C (32 to 158°F)
DOM Support: Yes

GLC-LH-SM vs. GLC-LH-SMD Similarities

Cisco SFP GLC-LH-SM and Cisco SFP GLC-LH-SMD are both used for 1Gbps Ethernet network. They support with IEEE 802.3 1000BASE-LX/LH standard and are compatible with each other. The two Cisco SFP modules can be connected with single mode and multimode LC fiber patch cable. If one switch supports Cisco SFP GLC-LH-SM, then it can also support Cisco SFP GLC-LH-SMD. Here are supported switches for these two Cisco SFP modules: Catalyst Express 500, Catalyst Express 520, Cisco ME 3400, Cisco ME 4900 series, Cisco ME 6500 series, Catalyst 2940 series, Catalyst 2950 series, Catalyst 2960 series, Catalyst 2960 S series, Catalyst 2970 series, Catalyst 3560 series, Catalyst 3560 E series, Catalyst 3560-X series, Catalyst 3750 series, Catalyst 3750-E series, Catalyst 3750-X series, Catalyst 4500series, Catalyst 4900 series, Catalyst 6500 series, cisco IE3010 series.

GLC-LH-SM vs. GLC-LH-SMD Differences

The difference between Cisco SFP GLC-LH-SM and Cisco SFP GLC-LH-SMD is that Cisco SFP GLC-LH-SMD has additional letter “D”. What does “D” mean?

There are two kinds of misunderstanding about “D”. Some think “D” represent “duplex”. Cisco SFP GLC-LH-SMD supports duplex interface. But Cisco SFP GLC-LH-SM should be connected with duplex LC patch cable. And nearly all SFP transceiver modules, except copper SFPs, are interfaced with duplex ports. So this understanding is obvious wrong. Some think that “D” means “ruggged”. This opinion is not true either. “Rugged” is abbreviated to “RGD”, for example, Cisco GLC-LX-SM-RGD Compatible 1000BASE-LX/LH SFP 1310nm 10km DOM Transceiver.

“D” of GLC-LH-SMD transceiver has additional support for Digital Optical Monitoring (DOM) capability. From the features stated above, Cisco SFP GLC-LH-SMD can support DOM function while Cisco SFP GLC-LH-SM can’t. DOM provides a diagnostic monitoring interface for optical transceiver modules. DOM supports monitoring of optic output power, optic input power, temperature, laser bias current, and transceiver voltage. When DOM is enabled, the system monitors the temperature and signal power levels for the optical transceiver modules in the specified ports. Console messages and syslog messages are sent when optical operating conditions fall below or rise above the SFP manufacturer-recommended thresholds.

Which to Select, GLC-LH-SM vs. GLC-LH-SMD?

Cisco SFP GLC-LH-SM and Cisco SFP GLC-LH-SMD are very similar and compatible with each other. The only difference is that the latter one has DOM function. SFP with DOM is better for transceiver and system protection. So you are suggested to select Cisco SFP GLC-LH-SMD. Except these two Cisco SFPS, you can find other Cisco compatible SFPs from FS.COM. For more information, please visit out site http://www.fs.com.

Spend Less on Building 100GbE Network With QSFP28 AOC

Currently 10GbE and 40GbE network are efficient and enough for some users. However, to some large-scale data centers, 40GbE Internet speed can’t meet their demands as the Internet continues to grow in size and traffic. According to research predicts, global data center Internet protocol traffic will grow by 31% every year within next five years. So 100GbE technology will become the mainstream in the near future. Cisco, Juniper, Arista provide 100GbE switches, routers and supported QSFP28 transceiver, QSFP28 AOC. But many enterprises still can’t upgrade to 100GbE network since the switch and QSFP28 AOC are quite expensive. Don’t worry about the high cost. This article will help you find a way to spend less on building 100GbE network with QSFP28 AOC.

QSFP28 AOC

100GbE QSFP28 AOC is composed of an OM4 multimode cable connecting two QSFP28 connectors on each end. The form factor design is easy for plugging and removal. The QSFP28 AOC is compliant to the QSFP MSA (multi-source agreement). QSFP28 AOCs support 100G QSFP28 standards and are available in various lengths (usually from 1-30 meters). 100G QSFP28 AOCs provide an affordable low-power alternative to interconnect 100G QSFP28 ports in data center applications. It’s useful for simplified intra rack and inter rack configurations. The following table lists 100GbE QSFP28 AOC of several famous brands.

QSFP28 AOC

Brands QSFP28 AOC Price
Cisco QSFP-100G-AOC (1m-30m) Above US$ 1,000
Arista AOC-Q-Q-100G (1m-30m) Above US$ 3,000
Juniper JNP-QSFP28-AOC (1m-30m) Above US$ 2,000
FS.COM QSFP28 AOC (1m-30m) From US$ 540 to US$ 630

Table 1. QSFP28 AOC Price Comparison

Switches Supporting QSFP28 AOC

Cisco, Arista, Juniper are three famous fiber optic transceiver manufactures. Transceiver modules and switches of these brands are very common in the market. As the demand for 100GbE data center keeps moving, these manufactures produce switches including 100GbE QSFP28 ports. Here I list four switches which can support QSFP28 AOC, Cisco Nexus 3232C, Arista 7500R, Juniper QFX5110 and FS.COM S5850-48S2Q4C.

  • Cisco Nexus 3232C—The Cisco Nexus 3232C switch is a low latency, dense, high-performance 100GbE switch designed for data center. It can not only meet customers’ current network needs but also suitable for future applications such as big data, cloud and virtualization. Each of 32 100GbE QSFP28 ports can operate at 10, 25, 40, 50, 100 GbE.
  • Arista 7500R—Arista 7500R switches (7500R-36CQ, 7500R-36Q, 7500R-48S2CQ) is designed to lower power per 100GbE port and produce more reliable and dense network. The switches are available in a compact system design of 12, 8 and 4 slot. 7500R-36CQ has 36-port 100GbE QSFP line card. 7500R-36 owns 1/10GbE line card with two 100GbE QSFP28 ports. 7500R-48S2CQ is available with up to 6 100GbE QSFP28 ports.
  • Juniper QFX5110—Juniper provides two switches with 100GbE port: QFX5110-48S and QFX5110-32Q. QFX5110-48S is a 10GbE/100GbE data center access switch offering 48x10GbE SFP+ port and 4x100GbE QSFP28 ports. QFX5110-32Q offers up to 32x40GbE QSFP+ ports, or 20x40GbE QSFP+and 4x QSFP28 ports.
  • FS.COM offers two switches for 100GbE network: S5850-48S2Q4C and S8050-20Q4C. S5850-48S2Q4C provides 48x10GbE SFP+ ports, 2x40GbE QSFP+ ports and 4x100GbE QSFP28 ports. S8050-20Q4C has 2x40GbE QSFP+ ports and 4x100GbE QSFP28 ports.
Switch Brands Model Supported QSFP28 AOC Switch Price
Cisco Nexus 3232C QSFP-100G-AOC (1m-30m) About US$ 19,500.00
Arista 7500R-36CQ 100GBASE-AOC(3m to 30m) Average US$ 60,000.00
7500R-36Q
7500R-48S2CQ
Juniper QFX5110-48S QSFP28 AOC (10 m) Above US$ 16,500.00
QFX5110-32Q
FS.COM S5850-48S2Q4C Generic QSFP28 AOC (1m-30m) US$ 6,900.00
S8050-20Q4C

Table 2. Price Comparison of Switches Supporting QSFP28 AOC

Spend Less With FS.COM Switches and QSFP28 AOC

Based on Table 1 and Table 2, to build a 100GbE network with QSFP28 AOC will cost a lot, especially when you require for products from Cisco, Arista and Juniper manufacturers. By comparison, you can see the price of FS.COM switches for 100GbE network and QSFP28 AOC is quite lower. So FS.COM can help you spend less on building 100GbE network with QSFP28 AOC. But if you have already owned Cisco, Arista or Juniper switches, you can buy compatible QSFP28 AOCs which are more cost-effective and have been tested to assure 100% compatibility.

Related FS.COM News:  FAQs about FS.COM 100G Switches