How to Make Your Own Ethernet Cables?

Ethernet patch cables are indispensable for network. However, Ethernet patch cables are more expensive than bulk cables and the pre-terminated lengths are not always that you need. So it’s quite necessary to know how to wire Ethernet cable by yourself. This article will show you detailed steps of making your own Ethernet patch cable.

Materials You Need
Bulk Ethernet cable

Usually people will choose Cat5e cable. Cat5e cable is a little different from Cat5. It can handle data rate up to 1000Mbps. Cat5e is suitable for Gigabit Ethernet and experiences much lower levels of near-end crosstalk (NEXT) than Cat5. So in most applications, Cat5 has been superseded by Cat5e. Except Cat5e, you may also choose Cat6 cables which have better performance. Cat6 cable has twice the bandwidth of Cat5. It’s ideal for supporting 10 Gigabit Ethernet. Select the cable type and then buy the lengths of the cable you need.

RJ45 Connectors for Cat5e or for Cat6

RJ45 connectors are often used for telephone and network. RJ45 connectors include a variety of types for Cat 5e or Cat6, such as shielded, strain relief boots, 2 prong or 3 prong, etc. Whatever, you need to select the one suitable for your application. FS.COM provides plenty of RJ45 connectors meeting a high standard of safety quality.

rj45-connectors

RJ-45 Crimping Tool

RJ45 crimping tool is designed to quickly, strip, crimp and cut the wires in an easy operation. FS.COM supplies various types of high quality crimping tools. With this kind of tool, you can get precise and reliable terminations every time.

fs-crimping-tool

Steps for Wiring Ethernet Cable
Step 1. Strip Outer Sheath

Use your stripper on your crimping tool to strip 1 inch (2.5 cm) sheath from the end of the cable. Insert the cable into the stripper portion of the crimping tool and squeeze it tight. When squeezed, rotate the crimping tool around the cable a full 360°. At last, pull away and the sheath will be stripped. If you break the internal twisted wires by accident, just cut the broken wire and strip again. So when you measure the cable length, you should better leave spare inches in case things happen like this.

Step 2. Untwist and Arrange Wire

After stripping the sheath, you can find 8 color-coded wires inside. Then you need to untwist the internal wires and arrange them into a proper wiring scheme for RJ45 connector. There are two kinds of color codes standards: T568A and T568B. The color order is important to get correct. No matter which standards you choose, you should arrange the color-coded wires in the same order on both sides. Here recommend you T568B color-coded wiring. The following are about pins and colors used in T568B standards.

Pin1—White/Orange
Pin2—Orange
Pin3—White/Green
Pin4—Blue.
Pin5—White/Blue
Pin6—Green.
Pin7—White/Brown
Pin8—Brown

Step 3. Insert the wire into RJ45 connector

Before insert the wire into RJ45 connector, you need to cut down the wire to fit in the connector. Bring the wires together and cut them down in an even line with the cutting tool on the crimping tool. Then insert the wires into the connector in the right order. Ensure each wire fits into each groove in the connector. The wires should be inserted until the sheathing is inside the connector, just beyond the crimp portion of the connector.

insert-wire-into-rj45

Step 4. Crimp

Put the connector into the crimping tool carefully until the connector can’t go in any further. Squeeze the crimping tool very tightly and release. Then squeeze the the crimping tool again to make sure that all of the pins are pushed down on the connector. When finishing crimping, check that if all pins are all crimped down. If the pins are all down, tug the connector slightly to make sure that it is securely attached to the wire.

crimp-rj45

Step 5. Test

Before installing the cable, you should better take a test with an Ethernet cable tester. If the Ethernet cable doesn’t work, look closely at each end and see if you can find the problem. Usually the problem is caused because a wire ends up in the wrong place or one of the wires makes no contact or poor contact. You should also check if the color is in the right order. If the color order is wrong, then cut the end off and start again.

Summary

Sure, you can buy Ethernet cables from the store directly. But if you need to make your own cable with special lengths, then you are lucky to read this article. Remember that the Ethernet cable should be no more than 100 meters or 328 feet. Because the cable performance will be influenced by the over length. For bulk cables, RJ45 connectors, crimping tools, and network testers, etc., you can get all from FS.COM. Hope you can make your own Ethernet cable successfully.

How to Distinguish T568A and T568B of RJ45 Ethernet Cable Wiring?

Ethernet cable can be easily found in our daily life. Ethernet cable is color-coded if you look at it carefully. Color-coded wiring sequences exist as a cabling industry standard. Thus, cabling technicians can save a lot of time of doing cable termination on both ends by following others’ work without guessing or deciphering the function and connections of each wire pair. This article will tell the T568A and T568B standards that the Ethernet cable jack wiring follows.

What Are T568A and T568B Standards?

RJ45 conductor data cable contains 4 pairs of wires. Each one consists of a solid colored wire and a strip of the same color. There are two wiring standards for RJ45 wiring: T568A and T568B. T568A and T568B are the two wiring standards for RJ45 connector data cable. T568A was specified by TIA/EIA-568-A wiring standards in 1995. Later it was replaced by the TIA/EIA 568-B standard in 2002 and has been updated since. Both standards define the T568A and T568B pin-outs for using unshielded twisted pair cable and RJ45 connectors for Ethernet connectivity. These two standards and pin-out specification appear to be related and interchangeable. But they still have differences and should not be used interchangeably.

t568a-and-t568b

RJ45 Color-Coded Scheme

RJ45 cables have 8 color-coded wires and the plugs have 8 pins and conductors. Eight wires are used as 4 pairs, each representing positive and negative polarity. The following figure shows pin and colors used in the T568A and T568B standards.

rj45

Straight-through and Cross-over Connections

The wiring standards T568A and T568B are used to create a cross-over cable (T568A on one end, and T568B on the other end), or a straight-through cable (T568B or T568A on both ends).

Straight-through cables are used to connect computers to a Ethernet switch. The RJ45 cable uses only 2-pairs of wires: orange (pins 1, 2) and green (pins 3, 6). Pins 4, 5 (blue) and 7, 8 (brown) are not used. Straight-through cable connects pin 1 to pin 1, pin 2 to pin 2, pin 3 to pin 3, and pin 6 to pin 6.

straight-through-cable

Cross-over cable is used to network two computers without a Ethernet switch (hub). Cross-over cable connects pin 1 to pin 3, pin 2 to pin 6, pin 3 to pin 1 and pin 6 to pin 2. This kind of cable is used to connect TX+ (transmit) to RX+ (receive), and TX- to RX-. The unused pins are generally connected straight-through in both straight-through and cross-over cables.

cross-over-cable

Which Standard Should You Choose?

Actually there is no electrical difference between the T568A and T568B wire sequences. So it’s hard to tell which one is inherently better. The difference between the two is the position of the orange and green wire pairs. It is preferable to wire to T568B standards if there is no pre-existing pattern used within a building.

In fact, both standards are acceptable in most cases. You can use either one as long as you’re consistent. T568B is the standard followed by the majority of Ethernet installations in the United States for RJ45 color code. It is the more common standard used when cabling for businesses. While T568A is the majority standard followed by European and Pacific countries. It is also used in all United States government installations. So when you face the selection, you may make the decision on the country you work in and what types of organizations you install for.

Conclusion

T568A and T568B are the two wiring standards for RJ45 connector data cable specified by TIA/EIA-568-A wiring standards document. Color-coding is part of the standards. If modifying the Ethernet cables improperly, signal loss of network connectivity can be caused. So please insure all connectors and cables are modified in accordance with standards when you do cable terminations.

Secrets of Choosing Fiber Rack Mount Enclosure

Fiber rack mount enclosures can provide a high-density solution for inter-connects or cross-connects between backbone horizontal cable and active equipment. Enclosures allow for easy field termination of connectors or installation of pre-terminated solutions, and are ideal for high-density fiber applications in data centers, equipment rooms, and central offices. Fiber rack mount enclosures come in different configurations. You may find fiber enclosures in the market with different sizes, slide-out or lid type, fixed front panel or removable front panel, splice tray or preterminated. Among so many types, you have to choose one that suits your application the most. So how to make the right decision? The following will tell you the method.

fiber-enclosure-loaded

Which Size of Rack Mount Enclosure?

The rack mount units are designed for rack mounting in 19-in (48 cm) racks. They are available in rack space options of 1U (two panels, cassettes or modules), 2U (four panels, cassettes or modules), 3U (six panels, cassettes or modules) and 4U (twelve panels, cassettes or modules), etc.(See the following picture.) You should choose the most proper one depending on the space and port requirement of your project.

rack-sizes-rack-units

Slide-out Type or Lid Type?

The rack mount enclosures include two kinds. One is the slide-out type, and the other incorporates a removable lid. The slide out type is more expensive while the lid type is less expensive but requires the user to remove the whole enclosure from the rack to gain internal access. If your budget is sufficient, I will recommend you to use the slide-out type. Then you may get more benefits during installation and maintenance, as they respectively feature a convenient slide-out support tray and a integrated swing-out tray so that you don’t need to remove the whole enclosure from the rack to gain internal access.

Fixed Front Panels or Removable Front Panels?

As we know, fiber optic adapters are the key part of an enclosure to accept the various fiber optic connectors. Thus, to choose a proper front panel option is also important. For general rack mount enclosures, there are mainly two types—one type uses fixed 1U High 19” front panel, and the other type incorporates three, or even up to five removable front panels. The latter is now becoming more popular with users, because a plug & play fiber adapter panel solution assures flexibility and ease of network deployment and MAC (moves, adds, and changes).

Splice or Pre-terminated?

Pigtail splicing and pre-terminated assemblies are the two basic way to do fiber termination. Depending on which method you choose, there are some differences in the rack mount enclosure selection. For pigtail splicing, you may need a rack mount panel with fiber splice tray, which are used for efficient management and storage of the spliced optical fibers. Splice tray is used for efficient management and storage of the spliced fiber optic cables. Fiber optic adapters are installed into the cut outs in the enclosure to accept the various fiber optic connectors. Fiber optic pigtails mate with the adapters and the fusion-spliced tails are stored on the splice tray.

But if you apply pre-terminated assemblies, the inner configuration of the rack mount panel is only the spools that are used to organize the cables. Obviously, the pre-terminated solution will help you save more installed time and labor cost.

Conclusion

In this article, you are advised to select the best fiber rack mount enclosure suitable for your own application from so many types. FS.COM offers a wide range of rack mount enclosures, which is good for interconnect and cross-connect in building your data centers. It’s ideal for the organization and protection of optic backbone terminations. Any service need, please contact us via sales@fs.com or call 24/7 Customer Service: 1 (718) 577 1006.

10G SFP or 10GBASE-T SFP for 10GbE Network?

The dramatic growth in data center requires the higher-performance servers, storage and interconnects. From initial 100M, 1G, 10G, to 40G and 100G, high speed Ethernet has never stopped developing. The standard for 10 Gigabit Ethernet (IEEE802.3ae) was ratified in 2002. In 10 Gigabit Ethernet, engineers often find it puzzled to choose a more suitable physical media between fiber and copper. Take a look at the media options for 10GbE Network.

Media Options for 10GbE Network

SFP+ (small form-factor pluggable plus) supports both fiber optic cables and DAC (direct attach cable). It delivers a wide variety of 10GbE Ethernet connectivity options for data center, enterprise wiring closet, and service provider transport applications. But it has the limitations that will prevent the media from moving to every server.

SFP+ cable is designed for 10GbE access layer interconnection in data center. It includes direct attach copper cables and active optical cables. DAC is a lower cost alternative to fiber, but it can support limited transmission distance and it’s not backward-compatible with existing GbE switches. DAC requires the purchase of an adapter card and requires a new top of rack (ToR) switch topology. DAC is more expensive than structured copper channels, and cannot be field terminated.

10GBASE-T SFP

10GBase-T SFP enables 10GbE connections with unshielded or shielded twisted pair cables over distances up to 100 meters. 10GBase-T technology appears as SPF is not compatible with twisted pair cabling system typically used in data centers. With 10GBase-T SFP, the migration from 1GbE to 10GbE can be easily achieved.

Comparison of 10G SFP and 10GBase-T SFP
Latency

Low latency becomes so important since the adoption of private cloud applications increases. It’s beneficial for ensuring fast response time and reducing CPU (center processing units) idle cycles so that improve data center efficiency.

As to 10GBASE-T SFP, the physical connection (PHY) standard uses block encoding to transport data across the cable without errors. The block encoding requires a block of data to be read into the transmitter PHY, a mathematical function run on the data before the encoded data are sent over the link. It happens the same on the receiver side. This standard specifies 2.6 microseconds for the transmit-receive pair, and the block size requires latency to be less than 2 microseconds. While 10G SFP applies simplified electronics without encoding, and common latency is around 300 nanoseconds per link.

You may think that two microseconds are not high. But what if a TOR infrastructure where traffic is passing 4 hops to reach the destination? 10.4-microsecond delay will be caused when using 10GBASE-T SFP. The following table tells details about the latency of SFP+ cable, 10G SFP and 10GABSE-T SFP for different number of links.

Number of Links SFP+ Cable Latency 10G SFP Latency 10GBASE-T SFP Latency
1 0.3 0.1 2.6
2 0.6 0.2 5.2
3 0.9 0.3 7.8
4 1.2 0.4 10.4
5 1.5 0.5 13.0
6 1.8 0.6 15.6

From the above table, it shows that the latency of 10GBASE-T SFP is the highest. As network links grow, the latency turns to be higher. It’s known that the lower latency, the faster the network speed. High latency in the data center infrastructure results in delays in CPU and application works, therefore limiting data center efficiency and increasing operational costs.

Power Consumption

Power consumption is also one of the important factors to be considered in data centers. Engineers are sensitive to power consumption and find a way to seek the lowest possible power consumption technologies. It’s said that every watt of power consumed, typically two additional watts are needed for cooling.

10GBase-T components today require anywhere from 2 to 5 watts per port at each end of the cable depending on the distance of the cable. But 10G SFP requires about 0.7 watt regardless of distance. The figure below compares the power consumption of three media options of 10GbE Ethernet.

10GBASE-T-SFP-power consumption

From this figure, suppose there are 10000 ports in the data center, 10G SFP can greatly save the power. On contrary, 10GBASE-T components consumes the most power. Thus, to save power in the data center, 10G SFP and SFP+ cable should better be selected when deploying thousands of cables in a data center.

Conclusion

From this article, 10G SFP and SFP+ cable solutions are better than 10GBASE-T SFP for 10G data center. But 10GbE is not the ultimate goal. Besides factors mentioned in this article, you should also select a cabling solution which can support not only current needs but also future data center deployments when you design 10GbE network.

Dos & Don’ts of Cable Management

Just imagine how would you feel when you face cable spaghetti? You must say, “oh, it’s very annoying.” Yes, that’s right. Improper cabling can bring disadvantages like heat retention, untimely hardware failure and maintenance headaches. So how to avoid cable spaghetti and keep network cabling in a good organization?

nice-cabling

Since cable management is one of the most important factors of data center design, it’s necessary to master some cabling skills. The following content will give you some suggestions for cabling installation.

Don’t Pull Fiber Jumpers too Hard

When installing cables, pulling issue can’t be avoided. Pulling cables too hard can damage them by stressing the core. Stressing the core will affect the signal performance. In extreme cases, it will cause unwinding of the twists in the sheath. Under this situation, you should better buy high quality patch cords from reliable manufacturers or vendors. Good patch cords are able to withstand the stress. Because cheap cables have sub-standard sheathing and narrow diameter cores which can cause signal loss. A smaller core is also more fragile and weak, more likely to bend, leading to an increased rate of cable failure.

Don’t Ignore Labels

Cable labels are very likely to be ignored by engineers. After finishing cable installation, they always think they can remember every cable type, including the network cables, power cables, patch cables, etc. Things doesn’t happen like you wish. Your memory will disappear as time goes on. Thus, you should not overlook labeling which can help you identify cables in a short time and leave messages to other installers to easily decipher what goes back.

cable-label

Don’t Forget Cable Ties

Cable ties are cheap and useful to get a clean look of your data center. Today there are many categories in different sizes with many colors. Nylon and Velcro ties are the most two common kinds. Velcro ties are better than plastic ties because they are easy and quick to add, remove and reusable. Nylon cable ties can put mush stress on cable bundles and cause pressure points on the cable jacket, changing the cable geometry and thus decreasing performance. What’s more, Velcro ties can be cut easily to any length you need.

Measure the Exact Cable Length You Need

Usually it says the longer, the better. But it’s another case for network cabling. Improper cable length often causes cable mess. Suppose you have bought 50m patch cable. However, you just use 20m. Then how to deal with the spare 30m cable? Just leave it alone? Of course not. So you’re advised to measure the exact cable length you need. Custom cable is the best solution for you to get the right length.

Leave Space for Cables Trays

What if very long cables are left in your network system? You may consider to put the cables into the cable trays. But it’s not a good idea. Cable trays should not be overloaded. Suspended cable trays are mounted to a rack or something. If it’s too heavy, the cable trays may fall off and break other expensive things. Too many cables is not only safety problem, but also leads to poor operational practices because it’s too hard or fear of disturbing cables. What’s worse, the cables at the bottom of cable try may be crushed and degrade signal propagation.

Choose a Proper Cable Manager

Cable manager is an economical and efficient solution to manage high density structured cabling in data centers and telecommunication rooms, which allows the maximum amount of cables to be organized in a minimum amount of space. Choose the best cable manager which suits the most for your application. Simple or complex cable manager, vertical or horizontal, plastic or metal, one must meet your requirements for network cable management improvement.

cable-manager

Conclusion

Cable management is not an easy work. Some engineers may not take cable management seriously or they don’t care much if there is a little mess. But the improper operation can cause lots of problems. To achieve neat cabling, too many things must be taken into consideration. And some useful tools and equipment are also required. Come to find a perfect cabling solution in FS.COM.

Comparison Between FBT and PLC Splitters

Enabling a single fiber interface to be shared among many subscribers, fiber optic splitters play an increasingly significant role in many of today’s optical networks. From FTTx systems to traditional optical networks, splitters provide capabilities that help users maximize the functionality of optical network circuits. In this article, I’d like to give a short introduction of fiber optic splitters.

Overview of FBT and PLC Splitters

In simple terms, a fiber optical splitter is a passive optical device that can split, or separate beams into two or more light beams. Based on the configuration of the splitter, these beams may or may not have the equal optical power as the original beam. By means of different constructions, the outputs of a splitter can have varying degrees of throughput, which is highly beneficial when designing optical networks.

fiber optic splitter

Now although technology continually evolves, and there are a variety of existing splitters in the market, the most two common types of fiber optic splitter are: fused biconic tapered splitter (FBT Splitter) and planar lightwave circuit splitter (PLC Splitter).

FBT Splitter

FBT is the traditional technology in which two fibers are placed closely together and fused together by applying heat while the assembly is being elongated and tapered. As the technology continues developing, the quality of FBT splitter is very good and they can be applied in a cost-effective way. Now FBT is designed to split power in optical telecommunication and widely used in passive networks, especially where the split configuration is relatively small.

FBT splitter.jpg

PLC Splitter

PLC splitter is a better choice for application where large split configurations are required. It uses an optical splitter chip to divide the incoming signal into multiple outputs. PLC splitter composes of three layers: a substrate, a waveguide, and a lid. The waveguide plays a key role in the splittering process which allows for passing specific percentages of light. Therefore, PLC splitters offer very accurate splits and a low loss. What’s more, PLC splitters have several types such as bare PLC splitter, blockless PLC splitters, fanout PLC splitter, mini-plug in type PLC splitter, etc.

PLC splitter.jpg

With the growth of FTTx worldwide, in order to serve mass subscribers, the demand for large split configurations in these networks has also grown quickly. Because of the performance benefits and overall low cost, PLC splitters are now the better solutions for these types of applications.

FBT Splitter vs. PLC Splitter

In optical networks, signals need to be splitted somewhere in order to serve for different customers. Splitter technology has made great progress in the past few years by introducing PLC splitter. However, being similar in size and outer appearance, the two types of splitter still have many differences. Here is a brief comparison of them.

Materials

FBT splitter is made out of materials that are easily available, for example, steel, fiber, hot dorm and others. All of these materials are cheap, which determines the low cost of the device itself. The technology of the device manufacturing is also relatively simple, which leads to its low prices as well. Compared with FBT splitters, the technology of PLC splitter is more complicated and expensive. It uses semiconductor technology production. Hence it is more difficult to manufacture PLC splitters. And the price of the device is higher.

Operating Wavelength

FBT splitters only supports three wavelengths: 850 nm, 1310 nm and 1550 nm, which makes its inability to works on other wavelengths. While PLC splitter can support wavelength from 1260 to 1650 nm. The adjustable rang of wavelength allows PLC splitter more wide applications.

Split Ratio

The split ratio of FBT splitter is up to 1:32, while the ratio PLC splitter goes up to 64, providing a high reliability. Furthermore, the signal in PlC splitter can be split equally due to technology implemented.

Temperature

In certain areas, temperature can be a crucial factor that affects the performance of optical components. Therefore, sometimes devices with good cold resistance is also vital. FBT splitter can work stable under the temperature of -5 to 75℃. PLC splitter can work at a wider temperature range of -40 to 85 ℃, providing relatively good performance in the areas of extreme climate.

Apart from the differences mentioned above, there are still other differences between FBT splitter and PLC splitter. For example, compared with FBT splitter, the size of PLC splitter is more compact. Hence, PLC spitter is more suitable for density applications.

Conclusion

In conclusion, this article introduce the fiber optical splitters and the differences between FBT splitter and PLC splitter. It’s significant to choose the most suitable splitters for your networks. There are a variety of splitters avaible in Fiberstore. If you want to know detailed information, please visit FS.COM.

Fiber Patch Panel for High Density Data Center

Fiber optic cable has been increasingly applied to meet the need of high speed network. In data centers, the cabling infrastructure turns to be more complicated. Under that situation, keeping good cable management is necessary since messy cabling will cause fiber optic loss and not easy for troubleshooting. Then fiber patch panels can serve as the tools for cabling systems.

Fiber-Patch-Panel

A fiber patch panel is also called fiber distribution panel. It’s used to terminate the fiber optic cable and provide connection to individual spliced fibers. Besides, fiber patch panels can create a secure environment for exposed fibers, housing connectors and splice unites.

Fiber Patch Panel Types

Fiber patch panels can be divided into two types. Both types can house, organize, manage and protect fiber optic cable, splices and connectors.

One is rack mount enclosure. Usually the rack mount enclosure holds the fibers horizontally and looks like a drawer. Rack mount enclosure is designed in 1U, 2U, 4U sizes and can hold up to 288 or even more fibers. The rack mount enclosures include two kinds. One is the slide-out variety and the other incorporates a removable lid. The sliding design of panels gives engineer easy access to the fibers inside but it’s more expensive. The lid type is less expensive but requires the user to remove the whole enclosure from the rack to gain internal access.

The other is wall mount enclosure. While wall mount enclosure is designed for enclosed wall mounting of adapter panels or splice trays. They are fabricated from steel sheets and finished with a light textured black powder coat. These panels can be easily mounted to any wall using the internal mounting holes. They can protect fibers from dust or debris contamination and organize the cables.

 wall-mount

Fiber Patch Panel Structure

A typical fiber patch panel contains four parts: enclosed chamber (rack mount or wall mount), adapter panels, connector adapters (providing low optical loss connection through mating appropriate connectors) and splice tray (organizing and securing splice modules). Adapters on a fiber patch panel are available in different shapes, such as LC, SC, MTP, etc. Most times, all adapters are of the same type in a panel. But sometimes a panel with different types of adapters is needed when more than one type of fiber optic connectors used in a network.

Fiber patch panel has two compartments. One contains the bulkhead receptacles or adapters, and the other is used for splice tray and excess fiber storage. Patch cable management trays are optional for some patch panels and make possible the neat storage of excessive patch cable lengths.

Fiber Patch Panel Ports

Fiber patch panel ports provide a place for data to enter and exit the panel. The number of these ports vary from 12, 24, 48, 64, 72, 96 to 288 and even more. Actually there is no limit to the number of ports on a patch panel. As long as there is enough room, you can fill the enclosure without interfering with the integrity.

FS.COM offers a 288 fibers 4RU rack mount fiber optic enclosure, loaded with 12 slots duplex fiber adapter panels. This high density patch panel provides a flexible and modular systems for managing fiber terminations, connections, and patching in all applications. With its high fiber densities and port counts, it maximizes rack space utilization and minimizes floor space. This enclosure makes it easy for network deployment, moves, adds, and changes. It’s a perfect solution for engineers to do the fiber termination and distribution.

288-fiber enclosure

Fiber Termination in the Patch Panel

In a patch panel, pigtail or field termination can be used for the connection. If it uses the pigtail approach, a splice tray is needed in the patch panel. This method provide the best quality connection and is usually the quickest. The second method uses fiber optic connector for field termination. A fiber optic connector is directly installed onto the individual fibers. This method usually takes longer time than pigtail but doesn’t need a splice tray in the patch panel. However, the connection quality may not be as good as preterminated pigtails.

Summary

Fiber patch panels are very useful especially in the high density data center. They feature with the benefits of easy fiber installation, maximum flexibility and manageability. Although patch panels are attractive, it’s the best only when it fits your application. No matter rack mount or wall mount type, loaded or unloaded, you should better choose the most suitable one based on your own situation.

Guide to Choose the Right Fiber Optic Patch Cable

Now with the fiber optic cable being widely used in a variety of industries and places, the requests for fiber patch are being elaborated. Fiber patch cables are being required to be improved and provided more possibilities to satisfy various application environments. Actually, many special fiber patch cables have been created to answer the market demand. But do you know how to choose right fiber optic patch cable for our network system? The following passages may give you a clear guideline to choose the suitable patch cables.

Why You Need Different Fiber Optic Patch Cables?

Fiber optic patch cable, some times also called fiber optic jumper cable, are terminated with fiber optic connectors on both ends. Due to the fact that fiber patch cable can carry more data efficiently, they play an important role in telecommunication and computer networking. And they are also used in numbers of places. Therefore, when you choose fiber patch cables, the first thing you need to know is the environment that the patch cable will be used. Indoor or outdoor? In the air or buried underground? Different environments have different requirements for cables. Let’s take armored fiber patch cable for example. Armored fiber patch cable, wrapped a layer of protective “armor” outside of the fiber optic cable, is generally adopted in direct buried outside plant applications where a rugged cable is needed for rodent resistance.

fiber optic patch cable

What You Should Concern to Choose the Fiber Optic Patch Cable?
Single-mode vs Multimode

Single-mode fiber patch cable uses 9/125um glass fiber and multimode fiber patch cable uses 50/125um or 62.5/125um glass fiber. Generally, single-mode fiber patch cables are the best choice for transmitting data over long distances. They are usually used for connections over large areas, such as college campuses and cable television networks. And most single-mode cabling is color-coded yellow. Multmode fiber patch cables are usually used in short distances. They are typically used for data and audio/visual applications in local-area networks and connections within buildings. Multimode cables are generally color-coded orange or aqua.

single-mode and multimode patch cbale

Simplex vs Duplex

Simplex Fiber optic cable means the cable composes of only one fiber, then a duplex patch cable consists of two fibers. Therefore, simplex fiber optic cable is common used in a system where only one-way data transfers. And duplex fiber optic cable is applied to where requires simultaneous, bi-directional data transfer.

simplex and duplex patch cable

Connector Types

On both ends of the fiber optic patch cable are terminated with a fiber optic connector (LC/SC/ST/FC/MPO/MTP). With the rapid development of optical fiber telecommunication, many different types of fiber connectors are available. They share similar design characteristics. Different connector is used to plug into different device. If ports on the both ends devices are the same, the patch cables such as LC-LC/SC-SC/MPO-MPO can be used; if you want to connect different ports type devices, LC-SC, LC-FC and LC-ST patch cables may meet your demand.

connector types.jpg

Polishing Types

It’s known to us that whenever a connector is installed on the end of fiber, loss cannot be avoided. Some of this light loss is reflected directly back down the fiber towards the light source that generated it. These back reflections will damage the laser light sources and also disrupt the transmitted signal. In order to optimize transmitting performance and ensure the proper optical propagation, the end of the fiber must be properly polished to minimize loss. Generally, there are two common polishing types: UPC and APC. And the loss of APC connector is lower than UPC connectors. So the optical performance of APC connector is better than UPC connectors.

UPC-APC-fiber-optic-patch-cable.jpg

Cable Jacket

The cable jacket is to provide strength, integrity, and overall protection of the fiber member. When choose one kind of fiber optic cables, the environment that the cables be used should be taken into consideration. Usually there are three types of jacket: PVC, LSZH and OFNP. Which one you choose depends on where you use the cables. Here are their features.

  • PVC cable resistant to oxidation, it is commonly used for horizontal runs from the wiring center.
  • LSZH cable has a special flame-retardant coating and it is used between floors in a building.
  • OFNP cable has fire-resistance and low smoke production characteristics. It usually works for vertical runs between floors.
Conclusion

In summary, there are many factors which may affect your choices of fiber optic patch cable. So it’s important to make sense which kind of patch cable can really meet your requirements. Fiberstore can provide all kinds of fiber optic patch cables to satisfy your needs!

LC Connector for High Density Data Centers

SC duplex connector was popular a few years ago. But as time goes on, smaller and more compact cabling components are required since the packing density of optical devices keeps increasing, namely high density. The smaller the shape, the more popular the component, just like development history of cellphone. Driven by this requirement, optic manufacturers start to produce mini components. The most widely known is the LC connector, a small form factor connector. The following article will introduce various types of LC connectors in details.

LC small form factor connector has just 1.25mm ferrule, half the size of the standard connector (compared with SC connector). Because of the high density design, LC connector solution can reduce the space needed on racks, enclosures and panels by approximately 50% throughout the network. So LC connector is a good solution for high density data centers. The LC connector uses RJ45 push-pull style plug that offers a reassuring, audible click when engaged. It makes moves, adds and changes easy and saves costs for you. Besides, the protective cap completely covers the connector end, which prevents ferrule end face from contamination and impact and enhances the network performance.

lc-lc-duplex

LC Uniboot

LC uniboot connector includes a finger latch release that there is no need for tools when making the polarity change. Some LC uniboot connectors are color-coded and labeled “A” and “B” to provide visual references when making a polarity change. The uniboot design is compatible with transceivers using the LC interface. The LC uniboot patch cords use special round cable that allows duplex transmission within a single cable, and it greatly reduces cable congestion in racks and cabinets comparing to standard patch cords. LC uniboot patch cord is perfect for high density applications. FS.COM LC uniboot patch cords are available in SM, OM3 or OM4 multimode fiber types to meet a wide variety of configurations and requirements.

uniboot-lc

If you have tried to release LC connectors in patch panels with high density, you must know how difficult it is. As to high density panel, thumbs and forefingers can not easily access to pull the connector. So some manufacturers start to offer a special LC connector which can be easily dealt with. And that’s push-pull tab LC connector.

Push-Pull-Tab-Patch-Cable

LC push-pull connectors offer the easiest solution for installation and removal. The special design is available in a compact model, ideal for minimizing oversized panels. With this kind of connector, you don’t need to leave additional space at the top or bottom to allow room for engaging the latch. The structure of the LC push-pull compact is designed as the latch can be slid back, instead of being pushed down, to facilitate smooth removal. It’s simple for installation and removal. Push-Pull LC patch cable allows users accessibility in tight areas when deploying LC patch fields in high density data centers. Push-Pull LC fiber patch cords are available in OM4, OM3 or single-mode fiber types to meet the demands of Gigabit Ethernet, 10 Gigabit Ethernet and high speed Fibre Channel.

Secure Keyed LC Connector

Secure keyed LC connectors are designed for network security and stability. 12 colors are available in FS.COM, including red, magenta, pink, yellow, orange, turquoise, brown, olive, etc. Connections only work when the color matches. The color-coded keying options provide design flexibility and facilitate network administration. It reduces risks and increases the security of network from incorrect patching of circuits. Secure keyed LC connectors feature low insertion loss, excellent durability.

lc-keyed

Conclusion

This article tells different types LC connectors, including common LC connector, LC uniboot, push-pull LC and secure keyed LC connector. The design of those LC connectors keeps improving to adapt to high density data centers. Nowadays, the trend of network is high speed and high density. So effective cable management is significantly important. And the key concern is how to manage more cables within less space. Thus, among so many kinds of interfaces, LC connector is the most frequently used and the most effective solution for space saving in data centers.

Suggestions for Data Center Design

The demands on data centers and networks are growing very fast. To meet communication needs, more and more devices are connected to the data center network links. It brings difficulties in data center management. The infrastructure design should guarantee the reliable network performance. But how to achieve the best performance? Four suggestions are recommended for you when designing a data center.

Maximizing Network Performance

As today, many companies adopt high density configurations and virtualization to increase the capacity of existing IT equipment. To ensure the network performance, a robust data center infrastructure is necessary. And three parts of the infrastructure must be considered: the structured cabling, racks and cabinets, and the cable management.

data-center

Figure 1. Structured data center

First, the structured cabling performance has a close relationship to the connectivity and cable components. If the components fail to deliver good cabling system, great optical loss will be caused. To improve the channel performance, insertion loss should be minimized especially in 40G and 100G data center. Second, choose right rack or cabinet to accommodate new equipment with different size and weight requirements since active equipment in the infrastructure turn to be broken easily and will be replaced in five years or less. Third, manage the airflow and maintain good cooling system. Because the rising temperature of the data center has an influence on network performance. The last component of the infrastructure is cable management. A well-designed cable management should meet the standards of spare space, high reliability and scalability. The infrastructure is designed for both copper and fiber, maintaining proper bend radius for both copper and fiber, protecting cable from damage, and creating crosstalk and return loss.

Saving Time

Although data center grows in size and complexity, it often requires faster deployment. It must adapt to the rapid changing business requirements. As it says, time is money. Selecting an infrastructure that optimize time, result in faster deployments can save lots of costs.

In order to save time in deployment, installation and future moves, adds, and changes, a suitable modular solution based on the rack or cabinet should be applied. The modular solution is also good for effective airflow management and cooling, which can save time because it can easily support high density when needed. Pre-terminated copper and fiber cabling solutions can also save time during installation and future cabling moves. Pre-terminated fiber systems, for example, MPO to MPO trunk cables or MPO to LC harness cables, can facilitate the migration to higher speeds.

Optimizing Spare Space

To adapt to high speed demands, data center infrastructure turns to be more complex. Now space is a premium in the data center as port densities continue to increase. Considering the cost, infrastructure should be optimized for greater flexibility and scalability. High density connectivity options including high density patch panel, MTP cassette, etc. are the solutions to optimize space while supporting large port densities. For instance, LC connectors (2 fiber) have been replaced by MPO (typically 12 or 24 fibers) connectors for the migration from 10 GbE to 40 GbE and 100 GbE.

MTP-solution

Figure 2. MTP components for saving space

To optimize space in the data center, the following factors are needed to be considered:

  • Choose the rack or cabinet as your basic building block
  • Select racks and cabinets with higher weight limits, sufficient depth and heights that support growing vertically
  • Select cable management that can support existing and future cable density, fluent airflow, and is designed to support both copper and fiber
  • Select connectivity that supports high density and mixed media
  • Use cable with small outside diameter
  • Consider patching outside the rack and cabinet to save space for equipment
  • Select a rack or cabinet solution that easily integrates with overhead pathways
Finding a Cooperator With Rich Experience

During the design phase, the data center design must provide guaranteed performance while providing flexibility and scalability for future needs. During the installation phase, the solution must be easy to install, quick to deploy and easy to manage. So it’s important to find a qualified contractor who has a history of quality installations. You also need to choose a good manufacturer providing cost-effective components covering cooling, power, connectivity, cabling, racks and cabinets, cable management, and pathways, like Fiberstore (FS.COM). And the manufacturer should also have expertise of extending the equipment life, reducing cost and solving other problems in the data center.

Summary

Data center design is not an easy job as the cabling infrastructure becomes more complex for meeting the growing high data rates demands. To maximize the efficiency of a data center, too many elements should be taken into consideration. The above content gives suggestions for data center design to guarantee performance, save time, optimize space, and find an experienced cooperator. Hope this article is useful to your data center design.