Dos & Don’ts of Cable Management

Just imagine how would you feel when you face cable spaghetti? You must say, “oh, it’s very annoying.” Yes, that’s right. Improper cabling can bring disadvantages like heat retention, untimely hardware failure and maintenance headaches. So how to avoid cable spaghetti and keep network cabling in a good organization?

nice-cabling

Since cable management is one of the most important factors of data center design, it’s necessary to master some cabling skills. The following content will give you some suggestions for cabling installation.

Don’t Pull Fiber Jumper Cables too Hard

When installing cables, pulling issue can’t be avoided. Pulling cables too hard can damage them by stressing the core. Stressing the core will affect the signal performance. In extreme cases, it will cause unwinding of the twists in the sheath. Under this situation, you should better buy high quality patch cords from reliable manufacturers or vendors. Good patch cords are able to withstand the stress. Because cheap cables have sub-standard sheathing and narrow diameter cores which can cause signal loss. A smaller core is also more fragile and weak, more likely to bend, leading to an increased rate of cable failure.

Don’t Ignore Labels

Cable labels are very likely to be ignored by engineers. After finishing cable installation, they always think they can remember every cable type, including the network cables, power cables, patch cables, etc. Things doesn’t happen like you wish. Your memory will disappear as time goes on. Thus, you should not overlook labeling which can help you identify cables in a short time and leave messages to other installers to easily decipher what goes back.

cable-label

Don’t Forget Cable Ties

Cable ties are cheap and useful to get a clean look of your data center. Today there are many categories in different sizes with many colors. Nylon and Velcro ties are the most two common kinds. Velcro ties are better than plastic ties because they are easy and quick to add, remove and reusable. Nylon cable ties can put mush stress on cable bundles and cause pressure points on the cable jacket, changing the cable geometry and thus decreasing performance. What’s more, Velcro ties can be cut easily to any length you need.

Measure the Exact Cable Length You Need

Usually it says the longer, the better. But it’s another case for network cabling. Improper cable length often causes cable mess. Suppose you have bought 50m patch cable. However, you just use 20m. Then how to deal with the spare 30m cable? Just leave it alone? Of course not. So you’re advised to measure the exact cable length you need. Custom cable is the best solution for you to get the right length.

Leave Space for Cables Trays

What if very long cables are left in your network system? You may consider to put the cables into the cable trays. But it’s not a good idea. Cable trays should not be overloaded. Suspended cable trays are mounted to a rack or something. If it’s too heavy, the cable trays may fall off and break other expensive things. Too many cables is not only safety problem, but also leads to poor operational practices because it’s too hard or fear of disturbing cables. What’s worse, the cables at the bottom of cable try may be crushed and degrade signal propagation.

Choose a Proper Cable Manager

Cable manager is an economical and efficient solution to manage high density structured cabling in data centers and telecommunication rooms, which allows the maximum amount of cables to be organized in a minimum amount of space. Choose the best cable manager which suits the most for your application. Simple or complex cable manager, vertical or horizontal, plastic or metal, one must meet your requirements for network cable management improvement.

cable-manager

Conclusion

Cable management is not an easy work. Some engineers may not take cable management seriously or they don’t care much if there is a little mess. But the improper operation can cause lots of problems. To achieve neat cabling, too many things must be taken into consideration. And some useful tools and equipment are also required. Come to find a perfect cabling solution in FS.COM.

Comparison Between FBT and PLC Splitters

Enabling a single fiber interface to be shared among many subscribers, fiber optic splitters play an increasingly significant role in many of today’s optical networks. From FTTx systems to traditional optical networks, splitters provide capabilities that help users maximize the functionality of optical network circuits. In this article, I’d like to give a short introduction of fiber optic splitters.

Overview of FBT and PLC Splitters

In simple terms, a fiber optical splitter is a passive optical device that can split, or separate beams into two or more light beams. Based on the configuration of the splitter, these beams may or may not have the equal optical power as the original beam. By means of different constructions, the outputs of a splitter can have varying degrees of throughput, which is highly beneficial when designing optical networks.

fiber optic splitter

Now although technology continually evolves, and there are a variety of existing splitters in the market, the most two common types of fiber optic splitter are: fused biconic tapered splitter (FBT Splitter) and planar lightwave circuit splitter (PLC Splitter).

FBT Splitter

FBT is the traditional technology in which two fibers are placed closely together and fused together by applying heat while the assembly is being elongated and tapered. As the technology continues developing, the quality of FBT splitter is very good and they can be applied in a cost-effective way. Now FBT is designed to split power in optical telecommunication and widely used in passive networks, especially where the split configuration is relatively small.

FBT splitter.jpg

PLC Splitter

PLC splitter is a better choice for application where large split configurations are required. It uses an optical splitter chip to divide the incoming signal into multiple outputs. PLC splitter composes of three layers: a substrate, a waveguide, and a lid. The waveguide plays a key role in the splittering process which allows for passing specific percentages of light. Therefore, PLC splitters offer very accurate splits and a low loss. What’s more, PLC splitters have several types such as bare PLC splitter, blockless PLC splitters, fanout PLC splitter, mini-plug in type PLC splitter, etc.

PLC splitter.jpg

With the growth of FTTx worldwide, in order to serve mass subscribers, the demand for large split configurations in these networks has also grown quickly. Because of the performance benefits and overall low cost, PLC splitters are now the better solutions for these types of applications.

FBT Splitter vs. PLC Splitter

In optical networks, signals need to be splitted somewhere in order to serve for different customers. Splitter technology has made great progress in the past few years by introducing PLC splitter. However, being similar in size and outer appearance, the two types of splitter still have many differences. Here is a brief comparison of them.

Materials

FBT splitter is made out of materials that are easily available, for example, steel, fiber, hot dorm and others. All of these materials are cheap, which determines the low cost of the device itself. The technology of the device manufacturing is also relatively simple, which leads to its low prices as well. Compared with FBT splitters, the technology of PLC splitter is more complicated and expensive. It uses semiconductor technology production. Hence it is more difficult to manufacture PLC splitters. And the price of the device is higher.

Operating Wavelength

FBT splitters only supports three wavelengths: 850 nm, 1310 nm and 1550 nm, which makes its inability to works on other wavelengths. While PLC splitter can support wavelength from 1260 to 1650 nm. The adjustable rang of wavelength allows PLC splitter more wide applications.

Split Ratio

The split ratio of FBT splitter is up to 1:32, while the ratio PLC splitter goes up to 64, providing a high reliability. Furthermore, the signal in PlC splitter can be split equally due to technology implemented.

Temperature

In certain areas, temperature can be a crucial factor that affects the performance of optical components. Therefore, sometimes devices with good cold resistance is also vital. FBT splitter can work stable under the temperature of -5 to 75℃. PLC splitter can work at a wider temperature range of -40 to 85 ℃, providing relatively good performance in the areas of extreme climate.

Apart from the differences mentioned above, there are still other differences between FBT splitter and PLC splitter. For example, compared with FBT splitter, the size of PLC splitter is more compact. Hence, PLC spitter is more suitable for density applications.

Conclusion

In conclusion, this article introduce the fiber optical splitters and the differences between FBT splitter and PLC splitter. It’s significant to choose the most suitable splitters for your networks. There are a variety of splitters avaible in Fiberstore. If you want to know detailed information, please visit FS.COM.

Fiber Patch Panel for High Density Data Center

Fiber optic cable has been increasingly applied to meet the need of high speed network. In data centers, the cabling infrastructure turns to be more complicated. Under that situation, keeping good cable management is necessary since messy cabling will cause fiber optic loss and not easy for troubleshooting. Then fiber optic patch panels can serve as the tools for cabling systems.

Fiber-Patch-Panel

A fiber optic patch panel is also called fiber distribution panel. It’s used to terminate the fiber optic cable and provide connection to individual spliced fibers. Besides, fiber patch panels can create a secure environment for exposed fibers, housing connectors and splice unites.

Fiber Optic Patch Panel Types

Fiber patch panels can be divided into two types. Both types can house, organize, manage and protect fiber optic cable, splices and connectors.

One is rack mount panel. Usually the rack mount panel holds the fibers horizontally and looks like a drawer. Rack mount panel is designed in 1U, 2U, 4U sizes and can hold up to 288 or even more fibers. The rack mount enclosures include two kinds. One is the slide-out variety and the other incorporates a removable lid. The sliding design of panels gives engineer easy access to the fibers inside but it’s more expensive. The lid type is less expensive but requires the user to remove the whole enclosure from the rack to gain internal access.

The other is wall mount panel. While wall mount panel is designed for enclosed wall mounting of adapter panels or splice trays. They are fabricated from steel sheets and finished with a light textured black powder coat. These panels can be easily mounted to any wall using the internal mounting holes. They can protect fibers from dust or debris contamination and organize the cables.

 wall-mount

Fiber Patch Panel Structure

A typical fiber patch panel contains four parts: enclosed chamber (rack mount or wall mount), adapter panels, connector adapters (providing low optical loss connection through mating appropriate connectors) and splice tray (organizing and securing splice modules). Adapters on a fiber patch panel are available in different shapes, such as LC, SC, MTP, etc. Most times, all adapters are of the same type in a panel. But sometimes a panel with different types of adapters is needed when more than one type of fiber optic connectors used in a network.

Fiber patch panel has two compartments. One contains the bulkhead receptacles or adapters, and the other is used for splice tray and excess fiber storage. Patch cable management trays are optional for some patch panels and make possible the neat storage of excessive patch cable lengths.

Fiber Patch Panel Ports

Fiber patch panel ports provide a place for data to enter and exit the panel. The number of these ports vary from 12, 24, 48, 64, 72, 96 to 288 and even more. Actually there is no limit to the number of ports on a patch panel. As long as there is enough room, you can fill the enclosure without interfering with the integrity.

FS.COM offers a 288 fibers 4RU rack mount fiber optic enclosure, loaded with 12 slots duplex fiber adapter panels. This high density patch panel provides a flexible and modular systems for managing fiber terminations, connections, and patching in all applications. With its high fiber densities and port counts, it maximizes rack space utilization and minimizes floor space. This enclosure makes it easy for network deployment, moves, adds, and changes. It’s a perfect solution for engineers to do the fiber termination and distribution.

288-fiber enclosure

Fiber Termination in the Patch Panel

In a patch panel, pigtail or field termination can be used for the connection. If it uses the pigtail approach, a splice tray is needed in the patch panel. This method provide the best quality connection and is usually the quickest. The second method uses fiber optic connector for field termination. A fiber optic connector is directly installed onto the individual fibers. This method usually takes longer time than pigtail but doesn’t need a splice tray in the patch panel. However, the connection quality may not be as good as preterminated pigtails.

Summary

Fiber patch panels are very useful especially in the high density data center. They feature with the benefits of easy fiber installation, maximum flexibility and manageability. Although patch panels are attractive, it’s the best only when it fits your application. No matter rack mount or wall mount type, loaded or unloaded, you should better choose the most suitable one based on your own situation.

Guide to Choose the Right Fiber Optic Patch Cable

Now with the fiber optic cable being widely used in a variety of industries and places, the requests for fiber patch are being elaborated. Fiber patch cables are being required to be improved and provided more possibilities to satisfy various application environments. Actually, many special fiber patch cables have been created to answer the market demand. But do you know how to choose right fiber optic patch cable for our network system? The following passages may give you a clear guideline to choose the suitable patch cables.

Why You Need Different Fiber Optic Patch Cables?

Fiber optic patch cable, some times also called fiber optic jumper cable, are terminated with fiber optic connectors on both ends. Due to the fact that fiber patch cable can carry more data efficiently, they play an important role in telecommunication and computer networking. And they are also used in numbers of places. Therefore, when you choose fiber patch cables, the first thing you need to know is the environment that the patch cable will be used. Indoor or outdoor? In the air or buried underground? Different environments have different requirements for cables. Let’s take armored fiber patch cable for example. Armored fiber patch cable, wrapped a layer of protective “armor” outside of the fiber optic cable, is generally adopted in direct buried outside plant applications where a rugged cable is needed for rodent resistance.

fiber optic patch cable

What You Should Concern to Choose the Fiber Optic Patch Cable?
Single-mode vs Multimode

Single-mode fiber patch cable uses 9/125um glass fiber and multimode fiber patch cable uses 50/125um or 62.5/125um glass fiber. Generally, single-mode fiber patch cables are the best choice for transmitting data over long distances. They are usually used for connections over large areas, such as college campuses and cable television networks. And most single-mode cabling is color-coded yellow. Multmode fiber patch cables are usually used in short distances. They are typically used for data and audio/visual applications in local-area networks and connections within buildings. Multimode cables are generally color-coded orange or aqua.

single-mode and multimode patch cbale

Simplex vs Duplex

Simplex Fiber optic cable means the cable composes of only one fiber, then a duplex patch cable consists of two fibers. Therefore, simplex fiber optic cable is common used in a system where only one-way data transfers. And duplex fiber optic cable is applied to where requires simultaneous, bi-directional data transfer.

simplex and duplex patch cable

Connector Types

On both ends of the fiber optic patch cable are terminated with a fiber optic connector (LC/SC/ST/FC/MPO/MTP). With the rapid development of optical fiber telecommunication, many different types of fiber connectors are available. They share similar design characteristics. Different connector is used to plug into different device. If ports on the both ends devices are the same, the patch cables such as LC-LC/SC-SC/MPO-MPO can be used; if you want to connect different ports type devices, LC-SC, LC-FC and LC-ST patch cables may meet your demand.

connector types.jpg

Polishing Types

It’s known to us that whenever a connector is installed on the end of fiber, loss cannot be avoided. Some of this light loss is reflected directly back down the fiber towards the light source that generated it. These back reflections will damage the laser light sources and also disrupt the transmitted signal. In order to optimize transmitting performance and ensure the proper optical propagation, the end of the fiber must be properly polished to minimize loss. Generally, there are two common polishing types: UPC and APC. And the loss of APC connector is lower than UPC connectors. So the optical performance of APC connector is better than UPC connectors.

UPC-APC-fiber-optic-patch-cable.jpg

Cable Jacket

The cable jacket is to provide strength, integrity, and overall protection of the fiber member. When choose one kind of fiber optic cables, the environment that the cables be used should be taken into consideration. Usually there are three types of jacket: PVC, LSZH and OFNP. Which one you choose depends on where you use the cables. Here are their features.

  • PVC cable resistant to oxidation, it is commonly used for horizontal runs from the wiring center.
  • LSZH cable has a special flame-retardant coating and it is used between floors in a building.
  • OFNP cable has fire-resistance and low smoke production characteristics. It usually works for vertical runs between floors.
Conclusion

In summary, there are many factors which may affect your choices of fiber optic patch cable. So it’s important to make sense which kind of patch cable can really meet your requirements. Fiberstore can provide all kinds of fiber optic patch cables to satisfy your needs!

LC Connectors for High Density Data Centers

SC duplex connector was popular a few years ago. But as time goes on, smaller and more compact cabling components are required since the packing density of optical devices keeps increasing, namely high density. The smaller the shape, the more popular the component, just like development history of cellphone. Driven by this requirement, optic manufacturers start to produce mini components. The most widely known is the LC connector, a small form factor connector. The following article will introduce various types of LC connectors in details.

Common LC Connector

LC small form factor connector has just 1.25mm ferrule, half the size of the standard connector (compared with SC connector). Because of the high density design, LC connector solution can reduce the space needed on racks, enclosures and panels by approximately 50% throughout the network. So LC connector is a good solution for high density data centers. The LC connector uses RJ45 push-pull style plug that offers a reassuring, audible click when engaged. It makes moves, adds and changes easy and saves costs for you. Besides, the protective cap completely covers the connector end, which prevents ferrule end face from contamination and impact and enhances the network performance.

lc-lc-duplex

LC Uniboot

LC uniboot connector includes a finger latch release that there is no need for tools when making the polarity change. Some LC uniboot connectors are color-coded and labeled “A” and “B” to provide visual references when making a polarity change. The uniboot design is compatible with transceivers using the LC interface. The LC uniboot patch cords use special round cable that allows duplex transmission within a single cable, and it greatly reduces cable congestion in racks and cabinets comparing to standard patch cords. LC uniboot patch cord is perfect for high density applications. FS.COM LC uniboot patch cords are available in SM, OM3 or OM4 multimode fiber types to meet a wide variety of configurations and requirements.

uniboot-lc

Push-Pull LC Connector

If you have tried to release LC connectors in patch panels with high density, you must know how difficult it is. As to high density panel, thumbs and forefingers can not easily access to pull the connector. So some manufacturers start to offer a special LC connector which can be easily dealt with. And that’s push-pull tab LC connector.

Push-Pull-Tab-Patch-Cable

LC push-pull connectors offer the easiest solution for installation and removal. The special design is available in a compact model, ideal for minimizing oversized panels. With this kind of connector, you don’t need to leave additional space at the top or bottom to allow room for engaging the latch. The structure of the LC push-pull compact is designed as the latch can be slid back, instead of being pushed down, to facilitate smooth removal. It’s simple for installation and removal. Push-Pull LC patch cable allows users accessibility in tight areas when deploying LC patch fields in high density data centers. Push-Pull LC fiber patch cords are available in OM4, OM3 or single-mode fiber types to meet the demands of Gigabit Ethernet, 10 Gigabit Ethernet and high speed Fibre Channel.

Secure Keyed LC Connector

Secure keyed LC connectors are designed for network security and stability. 12 colors are available in FS.COM, including red, magenta, pink, yellow, orange, turquoise, brown, olive, etc. Connections only work when the color matches. The color-coded keying options provide design flexibility and facilitate network administration. It reduces risks and increases the security of network from incorrect patching of circuits. Secure keyed LC connectors feature low insertion loss, excellent durability.

lc-keyed

Conclusion

This article tells different types LC connectors, including common LC connector, LC uniboot, push-pull LC and secure keyed LC connector. The design of those LC connectors keeps improving to adapt to high density data centers. Nowadays, the trend of network is high speed and high density. So effective cable management is significantly important. And the key concern is how to manage more cables within less space. Thus, among so many kinds of interfaces, LC connector is the most frequently used and the most effective solution for space saving in data centers.

Suggestions for Data Center Design

The demands on data centers and networks are growing very fast. To meet communication needs, more and more devices are connected to the data center network links. It brings difficulties in data center management. The infrastructure design should guarantee the reliable network performance. But how to achieve the best performance? Four suggestions are recommended for you when designing a data center.

Maximizing Network Performance

As today, many companies adopt high density configurations and virtualization to increase the capacity of existing IT equipment. To ensure the network performance, a robust data center infrastructure is necessary. And three parts of the infrastructure must be considered: the structured cabling, racks and cabinets, and the cable management.

data-center

Figure 1. Structured data center

First, the structured cabling performance has a close relationship to the connectivity and cable components. If the components fail to deliver good cabling system, great optical loss will be caused. To improve the channel performance, insertion loss should be minimized especially in 40G and 100G data center. Second, choose right rack or cabinet to accommodate new equipment with different size and weight requirements since active equipment in the infrastructure turn to be broken easily and will be replaced in five years or less. Third, manage the airflow and maintain good cooling system. Because the rising temperature of the data center has an influence on network performance. The last component of the infrastructure is cable management. A well-designed cable management should meet the standards of spare space, high reliability and scalability. The infrastructure is designed for both copper and fiber, maintaining proper bend radius for both copper and fiber, protecting cable from damage, and creating crosstalk and return loss.

Saving Time

Although data center grows in size and complexity, it often requires faster deployment. It must adapt to the rapid changing business requirements. As it says, time is money. Selecting an infrastructure that optimize time, result in faster deployments can save lots of costs.

In order to save time in deployment, installation and future moves, adds, and changes, a suitable modular solution based on the rack or cabinet should be applied. The modular solution is also good for effective airflow management and cooling, which can save time because it can easily support high density when needed. Pre-terminated copper and fiber cabling solutions can also save time during installation and future cabling moves. Pre-terminated fiber systems, for example, MPO to MPO trunk cables or MPO to LC harness cables, can facilitate the migration to higher speeds.

Optimizing Spare Space

To adapt to high speed demands, data center infrastructure turns to be more complex. Now space is a premium in the data center as port densities continue to increase. Considering the cost, infrastructure should be optimized for greater flexibility and scalability. High density connectivity options including high density patch panel, MTP cassette, etc. are the solutions to optimize space while supporting large port densities. For instance, LC connectors (2 fiber) have been replaced by MPO (typically 12 or 24 fibers) connectors for the migration from 10 GbE to 40 GbE and 100 GbE.

MTP-solution

Figure 2. MTP components for saving space

To optimize space in the data center, the following factors are needed to be considered:

  • Choose the rack or cabinet as your basic building block
  • Select racks and cabinets with higher weight limits, sufficient depth and heights that support growing vertically
  • Select cable management that can support existing and future cable density, fluent airflow, and is designed to support both copper and fiber
  • Select connectivity that supports high density and mixed media
  • Use cable with small outside diameter
  • Consider patching outside the rack and cabinet to save space for equipment
  • Select a rack or cabinet solution that easily integrates with overhead pathways
Finding a Cooperator With Rich Experience

During the design phase, the data center design must provide guaranteed performance while providing flexibility and scalability for future needs. During the installation phase, the solution must be easy to install, quick to deploy and easy to manage. So it’s important to find a qualified contractor who has a history of quality installations. You also need to choose a good manufacturer providing cost-effective components covering cooling, power, connectivity, cabling, racks and cabinets, cable management, and pathways, like Fiberstore (FS.COM). And the manufacturer should also have expertise of extending the equipment life, reducing cost and solving other problems in the data center.

Summary

Data center design is not an easy job as the cabling infrastructure becomes more complex for meeting the growing high data rates demands. To maximize the efficiency of a data center, too many elements should be taken into consideration. The above content gives suggestions for data center design to guarantee performance, save time, optimize space, and find an experienced cooperator. Hope this article is useful to your data center design.

MTP Trunks Assembly for High Density Data Center

The need for high bandwidth has never stopped. High bandwidth means more fibers are needed for the cabling infrastructure. The demands certainly change the network architecture to be more complicated. For spine-and-leaf architecture, each leaf switch in the network is interconnected with every spine switch. As a result, with leaf-spine configuration in data centers, fiber counts can multiply very quickly compared with traditional three-layer distribution architectures.

Besides, 40GbE and 100GbE grow quickly in the data center. Relatively, the interface of parallel optics like 40G QSFP+ changes to be MPO/MTP with 12-fiber instead of duplex fiber. And that also increases the fiber counts in your data center structured cabling. As data center evolves, links require 144 fibers, 288 fibers or even more. So data center managers are in front of many challenges such as limited space, deployment efficiency and of course the cost.

MTP Deployment Solutions

To address these challenges, many data center cabling designs use MTP trunks with up to 144 fibers. In data centers requiring more than 144 fibers, multiple runs of a 144-fiber cable assembly are typically installed to achieve the total desired fiber count. For example, if a link requires 288 fibers from the main distribution area of the data center to another location, two 144-fiber trunk cables would be installed. This method can reduce the physical space capacity for future growth. Figure 1 depicts the space savings across three deployment scenarios in a 12-inch x 6-inch cable tray with a 50 percent fill ratio:

  • 4,440 total fibers using 370 x 12-fiber MTP trunks
  • 13,680 total fibers using 95 x 144-fiber MTP trunks
  • 16,128 total fibers using 56 x 288-fiber MTP trunks

comparison

Figure 1. Comparison of trunks with different fibers

MTP connectivity is one of the important solutions used in high density environment. MTP cable allows for the deployment of optical fiber termination of 12 fibers at a time rather than individual termination of single fiber strands. In addition, this kind of cabling is easy for future migration to 40/100/200/400GbE networks using parallel optical technologies. To achieve high-fiber-count cable and connectivity, various implementation options are available.

MTP Trunk Assemblies

MTP trunk cable assemblies are offered in fiber types in standard 12, 24, 48, 72, 96 or 144 core versions in a compact and rugged micro-cable structure. With high port density, it brings big savings in installation time and cost. Due to its discreet premium connectors and special fiber, it delivers low insertion loss and power penalties in high speed network environment. And the multifiber connector and compact dimension also ease the space pressure in costly data centers.

MTP trunk cables are available in either mesh bundles or distribution fan-out trunks since infrastructure designs, cabling environments and pathway types are different, MTP connectivity in backbone cabling can employ different methods. Below are two possibilities:

Cables that are factory terminated on both ends using MTP connectors (MTP-MTP trunks)
Cables that are factory terminated on one end using MTP connectors (MTP pigtail trunk)

MTP-trunks

Figure 2. MTP assemblies types

MTP-MTP Trunks

MTP trunk assemblies are used where all fibers are landed at a single location at each end of the link—for example, between the main distribution areas (MDAs) and the server rows or between the MDA and the core switching racks in a computer room or data hall, as Figure 3 shows. Additionally, MTP-MTP trunks also appear between MDAs of multiple computer rooms or data halls where open tray is the pathway.

same-computer-room

Figure 3. MTP-MTP trunk assembly deployed in a computer room

MTP Pigtail Trunks

MTP pigtail trunks can be used for environments where the pathway doesn’t allow for a pre-terminated end with pulling grip to fit through—for example, a small conduit space (see Figure 4). This approach is common when needing to provide connectivity between MDAs of multiple computer rooms or data halls. Additionally, a deployment using pigtail trunks can be useful when the exact pathway or route is not fully known, avoiding exact length measurement before ordering of the assembly.

two-computer-rooms

Figure 4. MTP pigtail trunk field terminated in two computer rooms

Conclusion

Many factors should be considered to plan and install a data center cabling infrastructure for actual and future needs, especially in high density environments. So before choose the best cabling installation solution, you need to take following points into concern:

  • Application environment: inside or between computer rooms or data halls
  • Design requirements: traditional three-layer or spine-and-leaf architecture
  • Future proofing: transition path and future-technology support

From this article, high-fiber-count MTP trunks are the best solution for your backbone cabling. MTP trunks is useful for faster installation, lower pathway congestion and greater efficiency while delivering the bandwidth to meet the needs of 40GbE/100GbE/200GbE and beyond.

A Wise Decision to Choose DWDM Mux/DeMux

The advent of big data requires for highly efficient and capable data transmission speed. To solve the paradox of increasing bandwidth but spending less, WDM (wavelength division multiplexing) multiplexer/demultiplexer is the perfect choice. This technology can transport extremely large capacity of data traffic in telecom networks. It’s a good way to deal with the bandwidth explosion from the access network.

WDM

WDM stands for wavelength division multiplexing. At the transmitting side, various light waves are multiplexed into one single signal that will be transmitted through an optical fiber. At the receiver end, the light signal is split into different light waves. There are 2 standards of WDM: coarse wavelength division nultiplexing (CWDM) and dense wavelength division multiplexing (DWDM). The main difference is the wavelength steps between the channels. For CWDM this is 20nm (course) and for DWDM this is typically 0.8nm (dense). The following is going to introduce DWDM Mux/Demux.

DWDM Technology

DWDM technology works by combing and transmitting multiple signals simultaneously at different wavelengths over the same fiber. This technology responds to the growing need for efficient and capable data transmission by working with different formats, such as SONET/SDH, while increasing bandwidth. It uses different colors (wavelength) which are combined in a device. The device is called a Mux/Demux, abbreviated from multiplexer/demultiplexer, where the optical signals are multiplexed and de-multiplexed. Usually demultiplexer is often used with multiplexer on the receiving end.

Mux/Demux

Mux selects one of several input signals to send to the output. So multiplexer is also known as a data selector. Mux acts as a multiple-input and single-output switch. It sends optical signals at high speed over a single fiber optic cable. Mux makes it possible for several signals to share one device or resource instead of having one device per input signals. Mux is mainly used to increase the amount of data that can be sent over the network within a certain amount of time and bandwidth.

Demux is exactly in the opposite manner. Demux is a device that has one input and more than one outputs. It’s often used to send one single input signal to one of many devices. The main function of an optical demultiplexer is to receive from a fiber consisting of multiple optical frequencies and separate it into its frequency components, which are coupled in as many individual fibers as there are frequencies.

mux-and-demux

DWDM Mux/Demux modules deliver the benefits of DWDM technology in a fully passive solution. They are designed for long-haul transmission where wavelengths are packed compact together. FS.COM can provide modules for cramming up to 48 wavelengths in 100GHz grid(0.8nm) and 96 wavelengths in 50GHz grid(0.4nm) into a fiber transfer. ITU G.694.1 standard and Telcordia GR1221 are compliant. When applied with Erbium Doped-Fiber Amplifiers (EDFAs), higher speed communications with longer reach (over thousands of kilometers) can be achieved.

Currently the common configuration of DWDM Mux/Demux is from 8 to 96 channels. Maybe in future channels can reach 200 channels or more. DWDM system typically transports channels (wavelengths) in what is known as the conventional band or C band spectrum, with all channels in the 1550nm region. The denser channel spacing requires tighter control of the wavelengths and therefore cooled DWDM optical transceiver modules required, as contrary to CWDM which has broader channel spacing un-cooled optics, such as CWDM SFP, CWDM XFP.

DWDM Mux/Demux offered by FS.COM are available in the form of plastic ABS module cassette, 19” rack mountable box or standard LGX box. Our DWDM Mux/Demux are modular, scalable and are perfectly suited to transport PDH, SDH / SONET, ETHERNET services over DWDM in optical metro edge and access networks. FS.COM highly recommends you our 40-CH DWDM Mux/DeMux. It can be used in fiber transition application as well as data center interconnection for bandwidth expansion. With the extra 1310nm port, it can easily connect to the existing metro network, achieving high-speed service without replacing any infrastructure.

DWDM MUX DEMUX

Conclusion

With DWDM Mux/DeMux, single fibers have been able to transmit data at speeds up to 400Gb/s. To expand the bandwidth of your optical communication networks with lower loss and greater distance capabilities, DWDM Mux/DeMux module is absolutely a wise choice. For other DWDM equipment, please contact via sales@fs.com.

User Guide for CWDM MUX/DEMUX

Is there a way to enhance your network system but also save cost, time and effort? Do you want to give up traditional model of using many fiber cables? The cost-effective way is to use the CWDM MUX/DEMUX (coarse wavelength division multiplexing multiplexer/demultiplexer). If you are the first time to use it, you are lucky to read the following content.

18-ch-cwdm-muxdemux

CWDM Mux/Demux Introduction

First you need to know what CWDM is. CWDM is a technology which multiplexes multiple optical signals on a single fiber by using different wavelengths of the laser light to carry different signals. CWDM MUX/DEMUX applies this principle. A CWDM MUX/DEMUX can maximize capacity and increase bandwidth over a single or dual fiber cable. It mixes the signals in different wavelengths onto a single fiber and splits it again into the original signals at the end of a link. This kind of device is used to reduce the number of required fiber cables and get other independent data links. CWDM MUX/DEMUX modules are wide from 2 channels to 18 channels in the form of 1RU 19’’ rack chassis. The following will take 9 channels 1290-1610nm single fiber CWDM Mux/Demux as an example. It’s a half 19’’/1RU module for LC/UPC connection.

Features are as follows:
  • Support up to 9 data streams
  • Wavelength range: 1260~1620 nm
  • Low insertion loss, half 19’’/1RU module low profile modular design
  • Passive, no electric power required
  • Simplex LC/UPC for line port
  • Duplex LC/UPC for CWDM channel port, easily support duplex patch cables between the transceiver and passive unit
  • Operating temperature: 0~70℃
  • Storage temperature: -40~85℃
9cwdm-2743-1u-lc-sfb
Preparation for Installation

To connect the CWDM Mux/Demux, you need two strands of 9/125μm single-mode fiber cables. Supportable transceivers cover the wavelengths of 1290 nm, 1370 nm, 1410 nm, 1450 nm, 1490 nm, 1530 nm, 1570 nm 1610 nm. And this device is used together with 9 CWDM-2759-LC-LGX-SFB.

front-channel

To ensure a reliable and safe long-term operation, please note the points below:

  • Only use in dry and indoor environments.
  • Do not locate CWDM Mux/Demux in an enclosed space without airflow since the box will generate heat.
  • Do not place a power supplies directly on top of a unit.
  • Do not obstruct a unit’s ventilation existing holes.
System Installation Procedures

1.To install CWDM MUX/DEMUX system, switch off all devices.
2.Install CWDM transceivers. Remember each channel has a unique transceiver with a certain wavelength. So each transceiver must be plugged into the appropriate channel and must not be used more than once in the system. Devices pairs must carry transceivers with the same wavelength.
3.Connect CWDM MUX/DEMUX units with matching cables (single-mode fiber). Before connecting cable, you should first inspect if the connectors are lean. Never forget cleaning work is an important factor to achieve a better network performance. The guidelines:

  • Keep connectors covered when not in use to prevent damage.
  • Usually inspect fiber ends for signs of damage.
  • Always clean and inspect fiber connectors before make a connection.

4. Power up the system.

Troubleshooting

When you connect the system, but you find there is not data link. Then you need to do:

  • 1. Check the attached devices by directly connecting CWDM MUX/DEMUX units using a short fiber cable.
  • 2. Check the fiber cables and fiber connectors.
  • 3. Check that each wavelength doesn’t occur more than once at the CWDM MUX/DEMUX units.
  • 4. Check if the transceivers are inserted into the matching port at the CWDM MUX/DEMUX units.
Conclusion

CWDM MUX/DEMUX is a cost-effective solution for expanding bandwidth capacity for short link communication. Besides saving costs, CWDM lasers consume less power and take up less space. FS.COM offers both CWDM MUX/DEMUX and DWDM MUX/DEMUX with high quality. If you are the first time to use these devices, keep in mind the above notes.

Things You Need to Know Before Deploying 10 Gigabit Ethernet Network

Since the establishment of 10 Gigabit Ethernet, it has been employed by large amount of enterprises in their corporate backbones, data centers, and server farms to support high-bandwidth applications. But how to achieve a reliable, stable and cost-effective 10Gbps network? There are ten things you should know before doing the deployment.

More Efficient for the Server Edge

Many organizations try to optimize their data centers by seeking server virtualization which supports several applications and operating systems on a single server by defining multiple virtual machines on the server. Because of this, the organizations can reduce server inventory, better utilize servers, and mange resources more efficiently. Server virtualization relies heavily on networking and storage. Virtual machines require lot of storage. The network connectivity between servers and storage must be fast enough to avoid bottlenecks. And 10GbE can provide the fast connectivity for virtualized environments.

More Cost-effective for SAN

There are three types of storage in a network: direct-attached storage, network attached storage, and SAN. Among them, SAN is the most flexible and scalable solution for data center and high-density applications. But it costs much and needs special trainees for installing and maintaining the Fibre Channel interconnect fabric.

The internet small computer system interface (iSCSI) makes 10 Gigabit Ethernet an attractive interconnect fabric for SAN applications. iSCSI allows 10 Gigabit Ethernet infrastructure to be used as a SAN fabric which is more favorable compared with Fibre Channel. Because it can reduce equipment and management costs, enhance server management, improve disaster recovery and deliver excellent performance.

Reducing Bottlenecks for the Aggregation Layer

Today, traffic at the edge of the network has increased dramatically. Gigabit Ethernet to the desktop has become more popular since it becomes less expensive. More people adopt Gigabit Ethernet to the desktop, which increases the oversubscription ratios of the rest of the network. And that brings the bottleneck between large amounts of Gigabit traffic at the edge of the network and the aggregation layer or core.

10 Gigabit Ethernet allows the aggregation layer to scale to meet the increasing demands of users and applications. It can well solve the bottleneck for its three advantages. First, 10 Gigabit Ethernet link uses fewer fiber stands compared with Gigabit Ethernet aggregation. Second, 10 Gigabit Ethernet can support multi Gigabit streams. Third, 10 Gigabit Ethernet provides greater scalability, bringing a future-proof network.

Fiber Cabling Choices

To realize 10 Gigabit Ethernet network deployment, three important factors should be considered, including the type of fiber cable (MMF of MF), the type of 10 Gigabit Ethernet physical interface and optics module (XENPAK, X2, XFP and SFP+).

Cable Types Interface Max Distance
MMF (OM1/OM2/OM3) 10GBASE-SR 300 m
10GBASE-LRM 220 m
10GBASE-ER 40 km
SMF (9/125um fiber) 10GBASE-LR 10 km
10GBASE-ZR 80 km

Form factor options are interoperable when 10 Gigabit Ethernet physical interface type is the same on both ends of the fiber link. For example, 10GBASE-SR XFP on the left can be linked with one 10GBASE-SR SFP+ on the right. But 10GBASE-SR SFP+ can’t connect to one 10GBASE-LRM SFP+ at the other end of the link.

Copper Cabling Solutions

As copper cabling standards becomes mature, the copper cabling solutions for 10GbE is becoming common. Copper cabling is suitable for short distance connection. The are three different copper cabling solutions for 10 Gigabit Ethernet: 10GBASE-CX4, SFP+ DAC (direct attach cable) and 10GBASE-T.

10GBASE-CX4 is the first 10 Gigabit Ethernet standard. It’s economical and allowed for very low latency. But it’s a too large form factor for high density port counts in aggregation switches.

10G SFP+ DAC is a new copper solution for 10 Gigabit Ethernet. It has become the main choice for servers and storage devices in a rack because of its low latency, small connector and reasonable cost. It’s the best choice for short 10 Gigabit Ethernet network connection.

10GBASE-T runs 10G Ethernet over Cat6a and Cat7 up to 100 m. But this standard is not very popular since it needs technology improvements to reduce its cost, power consumption, and latency.

For Top of Rack Applications

A top-of-rack (ToR) switch is a switch with a low number of ports that sits at the very top or in the middle of a 19’’ telco rack in data centers. A ToR switch provides a simple, low-cost way to easily add more capacity to a network. It connects several servers and other network components such as storage together in a single rack.

ToR switch uses SFP+ to provide 10G network in an efficient 1U form factor. DAC makes rack cabling and termination easier. Each server and network storage device can be directly connected to the ToR switch, eliminating the need for intermediate patch panels. DAC is flexible for vertical cabling management within the rack architecture. And the cabling outside the rack, the ToR switch uplink connection to the aggregation layer, simplifies moving racks.

The following figure shows a 10 Gigabit Ethernet ToR switching solution for servers and network storage. Because the servers are virtualized, so the active-active server team can be distributed across two stacked witches. This can ensure physical redundancy for the servers while connected to the same logical switch. What’s more, failover protection can be offered if one physical link goes down.

10G-ToR

Conclusion

10 Gigabit Ethernet network is not the fastest but quite enough for common use in our daily life. So you should better read this article before you do the deployment. Besides, FS.COM provides both fiber and copper cabling solutions for 10G network. For more details, please visit www.fs.com.