Selection Guide on PoE Switch

Currently IP cameras are widely used for video surveillance due to the high requirements for security. Typically, the IP cameras are with PoE functions, then PoE switch is needed for the connection. But some users feel confused about the PoE switch and don’t know how to choose a suitable PoE switch. This article is going to introduce you some guides on PoE switch selection.

What Is PoE and PoE Switch?

PoE is short for power over Ethernet. With PoE technology, data and power can be transmitted over a single Cat5e cable. A PoE switch is a device that contains multiple Ethernet ports to provide power and network communications to IP cameras. PoE switch is an economical and reliable solution for small business networks to deploy wireless access points and IP surveillance cameras.

Fiberstore poe switch

Considerations for PoE Switch Selection
Numbers of Ports

The most important is to check whether the numbers of ports on PoE switch are enough to connect all your devices. Fiberstore offers PoE switches including 8 ports, 24 ports, and 48 ports. PoE ports are flexible to connect with Cat5e cable without additional settings. All of our PoE switches have 2 Gigabit uplink SFP ports or 4 SFP+ ports. Uplink ports allow long distance data transmission between switches. With these ports, you can easily expand your networks. (Check news about PoE switch from FS.COM: Build and Expand Your Network with FS.COM New Introduced PoE Switches) So if you need to link multiple switches, you need to select switches with enough Gigabit ports.

Power Supplies for Powered Device

PoE switch applies two standards: IEEE802.3af and 802.3at. Each one can offer power for IP cameras. Due to the different standards, the output power of PoE switch is also different. IEEE802.3af can provide 15.4watts DC power on each port. As some power dissipates in the cable, only 12.95watts power at most can be supplied to powered devices. This standard is enough to power VoIP phones, wireless access points and some cameras over standard Ethernet cabling. While, IEEE802.3at is updated PoE standard known as PoE+. It can provide up to 25.5watts power available for powered device which is nearly twice as many as that 802.3af supplies. The updated standard can support more devices with high-power functionality such as door controllers, cameras with zoom capacity, or wireless access points supporting 802.11n.

Total Power

PoE switch has a total power. As described before, under IEEE802.3af standard, each port on the PoE switch can get 15.4watts power. Thus, the total power of a 24-port switch must reach 370watts so that it can make sure each port get sufficient power. And make sure there is additional power beyond that required for PoE for its switching functions. As to the IEE802.3at standard, each port supports 30watts. Under this condition, the PoE switch with total power of 370watts can only provide power supply to 12 ports.

Cable Requirements

The DC power of IEEE 802.3af standard is 15.4watts. It can support 10BASE-T and 100BASE-T. Two of four twisted pairs of Cat3 cable or higher can support the power and data transmission. The PoE+ standard delivers power up to 30watts and supports 1000BASE-T. Cat5e or Cat6 cable is able to support the power transmission. Connecting PoE switch to the router or cameras with Cat5e or Cat6 cable, the maximum transmission length is up to 100 meters.

When buying Ethernet cables, find a reliable vendor who provides standard network cable meeting the strict requirement. PoE power supply must use oxygen-free copper material—standard network cable. Non-standard cable utilizes other materials such as copper clad steel, copper clad aluminum, copper coated iron, etc. These cables are not suitable for PoE power supply because of the big resistance.

Conclusion

PoE switch is a cost-effective solution to increase the reliability and security of networks by providing centralized backup power to all connected IP surveillance devices. Before purchasing PoE switches, try to know as more details about the switch specifications as possible and also your own needs. To get good quality PoE switches, please come to FS.COM.

How to Choose a Wireless Access Point?

Nowadays, wireless LAN (local area network) becomes an independent part in our daily life. As waiting for your dishes in a restaurant, you may take out your phone and connect the Wi-Fi. I guess most of you have a wireless LAN. But if you have no or intend to upgrade your network, you’d better read this article on how to choose a wireless access point (AP).

fs-wifi-ap

Wireless AP Standards: 802.11n and 802.11ac

There are two newest IEEE wirelesss network standards including 802.11n (debuting in 2009) and 802.11ac (in 2014). The earlier 802.11n standard can support up to 540 Mbps, while the optimized 802.11ac products can provide the speed up to 1.3Gbps. 802.11ac is faster and more scalable than 802.11n. Except the improved speed, 802.11ac access points also optimize in the areas of range and reliability. Considering these factors, many enterprises may use 802.11ac technology.

However, though 802.11ac is better than 802.11n, it doesn’t mean it suits for everyone. First, 802.11ac needs big room for super wide channels. Second, you need to buy devices matching 802.11ac technology. At last, those devices should be close (20 or 30 feet) to the access point.

Dual Band Wireless AP or Single Band Wireless AP

Before discussing about dual band and single band, we need to know 2.4 GHz and 5 GHz. 2.4 GHz is a lower frequency than 5 GHz. It can penetrate most obstructions better. The signal can reach further. Wireless access point is one of the devices which use 2.4 GHz. While 5 GHz has a higher frequency, signals can’t penetrate solid obstructions like walls as easily as 2.4 GHz. 5 GHz provides us with more usable channels.

dual-band-wireless-ap

In the past, some 802.11n wireless AP is single band and can only support 2.4 GHz. It fails to meet the demands for 5GHz devices. Thus, the trend urges the appearance of new dual-band access point. Dual-band means that the access point can transmit and receive in two separate bands. Dual-band access points can support 2.4 GHz speeds and leverage wide channels, high data rates for connecting 5GHz devices. When you buy access points, make sure the one you choose can support both 2.4 GHz and 5 GHz.

Spatial Streams of Wireless AP

The number of spatial streams is one of the influencing factors on wireless speed. 802.11n stopped at four spatial streams, but 802.11ac goes all the way to eight. 802.11n introduced MIMO (more multiple input, multiple output). MIMO means that we can get multiple radio chains and antennas to transmit and receive. The more radio chains, the faster the wireless network speed. With 802.11n, a device can transmit multiple spatial streams at once, but only directed to a single address. It means only one user can get data at a time. That’s called single-user MIMO (SU-MIMO). While with 802.11ac, multi users can get data at the same time. And that’s called multiuser MIMO (MU-MIMO). As you can see, the more spatial streams, the better.

Get Wireless APs From Fiberstore

We provide three types of wireless APs which can be applied to enterprises, schools, hotels, etc. Our wireless APs contain the good features of easy plug & play installation and intuitive management, which is beneficial for reducing the need for dedicated IT personnel resources. And the unique watchdog technology makes AP work more stable and ensure the wireless network operate properly. Repeater mode makes wireless coverage more flexible. Both 802.11n and 802.11ac APs (as shown in the table below) can be found in Fiberstore.

Image 2.4GHz Speed 5.8GHz Speed CPU Antenna Gain
AP-S300 ap-s300 300 Mbps No 533 MHz 2x3dBi
AP-D1200 ap-d1200 300 Mbps 867 Mbps 650 MHz 4x3dBi
AP-D1750 ap-d1750 450 Mbps 1300 Mbps 720 MHz 6x3dBi
Conclusion

This article is to give you some advice on how to choose a wireless access point. Well, when you decide to buy one, remember the tips mentioned above including standards, dual band or single band, spatial streams. The most suitable is the best. A reliable vendor is also important. Hope this article can help you find your desirable wireless AP.

Fiber Splitter for FTTH Applications

Passive optical network (PON) has been widely applied in the construction of FTTH (fiber to the home). With PON architecture, network service providers can send the signal to multiple users through a single optical fiber, which can help them save great costs. To build the PON architecture, optical fiber splitter is necessary.

What Is Fiber Splitter?

The fiber splitter is a passive component specially designed for PON networks. Fiber splitter is generally a two-way passive equipment with one or two input ports and several output ports (from 2 to 64). Fiber splitter is used to split the optical signal into several outputs by a certain ratio. If the ratio of a splitter is 1×8 , then the signal will be divided into 8 fiber optic lights by equal ratio and each beam is 1/8 of the original source. The splitter can be designed for a specific wavelength, or works with wavelengths (from 1260 nm to 1620 nm) commonly used in optical transmission. Since fiber splitter is a passive device, it can provide high reliability for FTTH network. Based on the production principle, fiber splitters include Planar Lightwave Circuit (PLC) and Fused Bionic Taper (FBT).

PLC splitters are produced by planar technology. PLC splitters use silica optical waveguide technology to distribute optical signals from central office to multiple premise locations. The output ports of PLC splitters can be at most 64. This type of splitters is mainly used for network with more users.

The Structure of PLC splitters

Internal Structure

The following figure shows a PLC splitter. The optical fiber is splitted into 32 outputs. PLC chip is made of silica glass embedded with optical waveguide. The waveguide has three branches of optical channels. When the light guided through the channels, it is equally divided into multiple lights (up to 64) and transmitted via output ports.

1x32-plc-splitter

Outside Configuration

Bare splitter is the basic component of PLC fiber splitter. For better protection of the fragile fiber and optimized use, PLC splitters are often equipped with loose tube, connector and covering box. PLC splitters are made in several different configurations, including ABS, LGX box, Mini Plug-in type, Tray type, 1U Rack mount, etc. For example, 1RU rack mount PLC splitter (as shown in the figure below) is designed for high density fiber optical distribution networks. It can provide super optical performance and fast installation. This splitter is preassembled and fibers are terminated with SC connectors. It’s ready for immediate installation.

rack-mount-plc-spllitter

FBT splitters are made by connecting the optical fibers at high temperature and pressure. When the fiber coats are melted and connected, fiber cores get close to each other. Then two or more optical fibers are bound together and put on a fused taper fiber device. Fibers are drawn out according to the output ratio from one single fiber as the input. FBT splitters are mostly used for passive networks where the split configuration is smaller.

PLC Splitters From FS.COM

Fiberstore offers a wide range of PLC splitters that can be configured with 1xN and 2xN. Our splitters are designed for different applications, configurations including LGX, ABS box with pigtail, bare, blockless, rack mount package and so on.

Port Configuration Package Style Fiber Diameter
(Input/output)
Connector (Input/output) Pigtail Length
1×2 Steel tube, bare fiber 250μm None 1.5m
1×4 Mini module 900μm SC APC/UPC 2.0m
1×8 Pigtailed ABS box 2.00mm LC APC/UPC 3.0m
1×16 Mini plugged-in 3.0mm FC APC/UPC Customized
1×32 LGX ST APC/UPC
1×64 Splice Tray Type Customized
2×16 Rack mount
Conclusion

Fiber splitter is an economical solution for PON architecture deployment in FTTH network. It can offer high performance and reliability against the harsh environment conditions. Besides, the small sized splitter is easy for installation and flexible for future network reconfiguration. Therefore, it’s a wise choice to use fiber splitter for building FTTH network.

Save Cost by Using BiDi Transceivers

As usual, optical transceivers such as SFP or SFP+ use two fibers to transmit data between switches. One fiber is used to transmit data to the network equipment and the other fiber is utilized to receive the data. As to the transceiver modules of high speed data rate like QSFP-40G-SR4 and QSFP-40G-ESR4, they need more fibers. Is there any technology allowing transceivers to transmit and receive through one single optical fiber or two fibers for QSFP+?

What Is BiDi Transceiver?

The answer is yes. And that kind of transceiver is called BiDi transceiver. Bidi (Bi–Directional) transceiver is also known as WDM transceiver, because it applies wavelength division multiplexing (WDM) couplers, also called diplexers, which combine and separate data transmitted over a single fiber based on the wavelengths of the light.

BiDi Transceiver Advantage

Compared with traditional transceiver modules, BiDi transceivers can cut your cost on fiber cabling infrastructure by requiring fewer fiber cables, reducing the number of fiber patch panel ports and saving fiber cable management space. Based on the obvious advantages, you should deploy BiDi transceivers in your network. Here will recommend you several kinds of BiDi transceivers of 1Gbps, 10Gbps and 40Gbps.

BiDi Transceiver Categories

BiDi SFP transceivers transmit and receive optical signal through a single fiber on the wavelengths of 1310 nm & 1490 nm, 1310 nm & 1550 nm, 1490nm & 1550 nm. BiDi SFPs include the supportable data rate of 100Mbps and 1000Mbps. Take the Cisco GLC-BX-U compatible 1000BASE-BX-U BiDi SFP as an example. The wavelengths of the BiDi SFP are 1310 nm and 1490 nm. It can support the link lengths of 10 km over LC simplex fiber patch cable. As shown in the following figure, a pair of Cisco GLC-BX-U compatible BiDi SFPs are linked via a single LC simplex fiber patch cable to build the direct connection of two Cisco Catalyst 4948E-F switches.

cisco-glc-bx-u

Bidi SFP+ transceiver is enhanced SFP designed to support 10Gbps data rate with link lengths up to 80 km over one fiber. It uses WDM technology sharing 1270 nm & 1330 nm. Take a look at the figure below. It’s about the direct connection for 10G BiDi SFP+ in room wiring. The two Cisco SFP-10G-BXU-I compatible 10GBASE-BX10-U SFP+ transceivers are plugged into Cisco Nexus 9396PX switches. The connection is achieved by using an LC simplex fiber patch cable. It’s a simplest and cost-effective way to build 10 Gigabit Ethernet connectivity for data center.

cisco-sfp-10g-bxu-i

BiDi QSFP+

40G BiDi QSFP+ transceiver is specially designed for high density data center. With QSFP+ BiDi transceivers, you can get 40Gbps network over 10Gbps cable. In this way, you don’t need to replace all 10G two-fiber patch cables with 8-fiber MTP/MPO patch cable if you need network upgrade. In Figure 3, we use Cisco QSFP-40G-SR-BD compatible 40GBASE-SR BiDi transceivers for the direct connection of two switches. Instead of applying 40G MTP patch cable, we can just plug the common LC-LC fiber patch cable into the transceivers to get 40Gbps network. It saves you lots of costs.

cisco-qsfp-40g-sr-bd

Warm Tips: When you buy a BiDi transceiver, you may notice wavelengths are labeled on the BiDi transceivers like 1270nm-TX/1330nm-RX or 1270nm-RX/1330nm-TX. From this perspective, you can see this type of transceivers should be used in matched pairs, with their diplexers tuned to match the expected wavelength of the transmitter and receiver that they will be transmitting data from or to.

Summary

BiDi transceivers may be more expensive than common transceiver modules, but they can save you the cost on fiber cables from the long run. Fiberstore offers BiDi transceivers of various data rates which are highly compatible with some famous brands. If you plan to purchase BiDi transceivers for building or upgrading your network, you can visit our site www.fs.com.

What Should You Know About Fibre Channel?

Before Fibre Channel appears, SCSI (small computer system interface) was used as the transmission interface between servers and clustered storage devices. But as the high speed demands keep increasing, Fibre Channel replaces SCSI inevitably due to its higher transmission data rate, flexibility, and long distance. This article is going to introduce you some details about Fibre Channel.

What Is Fibre Channel?

Fibre Channel, short for FC, is a technology for transmitting data between computer devices at data rate of 1, 2, 4, 8, 16, 128 Gbps. It’s mainly used in storage area networks (SAN) in commercial data centers. It’s useful for connecting computer servers to shared storage devices and for interconnecting storage controllers and drives.

Fibre Channel Transceivers

Except optical fiber cable, Fibre Channel transceiver is the other vital equipment to connect the Fibre Channel network in data centers. It provides the interface between Fibre Channel systems and the optical fibers of the SAN. FS.COM offers SFPs and SFP+s that are compatible with Fibre Channel. Fiberstore Fibre Channel SFPs support the distance up to 80km and the data rate of 2G/4G. As to our Fibre Channel SFP+ transceivers, they can support the data rate up to 8Gbps and 10Gbps. In Fiberstore, you can also find some compatible brands of FC transceivers including Cisco, Juniper, Brocade, HPE, etc. What’s more, all these modules have been tested to assure 100% compatible. For your information, the following table shows some hot FC transceivers for 2G/4G and 8G/10G network applications.

Model Description
37656 2G Fibre Channel SFP 1310nm 10km DOM Transceiver
15376 Cisco DS-SFP-FC8G-ER Compatible 8G Fibre Channel SFP+ 1550nm 40km DOM Transceiver
15231 Cisco DS-SFP-FC8G-SW Compatible 8G Fibre Channel SFP+ 850nm 150m DOM Transceiver
33293 HPE (ex QLogic) AJ718A Compatible 8G Fibre Channel SFP+ 850nm 150m DOM Transceiver
39630 HPE (ex Brocade) AJ716B Compatible 8G Fibre Channel SFP+ 850nm 150m DOM Transceiver
35932 Brocade XBR-000163 Compatible 8G Fibre Channel SFP+ 850nm 150m DOM Transceiver
fibre-channel-sfp-sfp-plus
Transfer to High Speed Fibre Channel

However, as the need for high-bandwidth never stops increasing, the data rate of 2G, 4G or even 8G can’t meet the high speed requirements. So many data centers move to higher Fibre Channel standards, for example, 16G Fibre Channel. 16G FC links increase the network speed twice as 8G FC and 40% faster than 10G FC. The transition to 16G FC makes data transfer smoother, quicker and cost-effective from the good side. But from the other side, the transition still faces some challenges. There might be some data communication error rates that may affect the network performance. And the physics of 16G FC can possibly bring some new restrictions on fiber cabling and transceiver modules. Therefore, before starting to transfer to higher speed Fibre Channel infrastructure, you should better follow the tips listed below.

First, cleaning issue. In fiber optics connection, contamination is thought as a big problem which may lead to link failure. So you should clean all the transceiver modules, connectors and other cable junctions to ensure there is no contamination in the fiber optic connection. Some fiber testers and cleaning tools are necessary for your cleaning work.

Second, analyze the optical power budget between transmit and receiver ports. It requires that the power margin (transmit power minus power loss during the data transmission through the cable) should be more than the receiver power of the optical transceivers. At the same time, it also should meet the FC protocol specification.

Third, measure the light level on the transmitting side and receiving side. You can use suitable fiber optical light source or optical power meter to measure the power level on critical links. If the power level were not in the right station, check whether the cable length is suitable or cable bend radius reaches the maximum. Then you are suggested to purchase customized bend insensitive fiber cable for your special use.

Summary

Fibre Channel is commonly used for the connection of SAN in enterprise storage. You can find 2G/4G FC SFPs, 8G/10G FC SFP+ modules and matching fiber patch cables from FS.COM. If you need to upgrade your Fibre Channel network to 16G or even higher, remember the above tips and make sure the 16G FC are compatible with 4G FC and 8G FC.

Transceiver Solutions for Ubiquiti UniFi Switches

UniFi switch is one type of the switches Ubiquiti has introduced into the market (The other kind is Ubiquiti EdgeSwitch). The UniFi switch provides fiber connectivity options for easy expansion of your networks. This article will introduce the main features of UniFi switches, supportable SFP and SFP+, and easy tips for building network with UniFi switch.

Introduction to UniFi Switches

UniFi switch delivers high performance to satisfy your growing network. The Ubiquiti UniFi switches include US-24 and US-48. US-24 can support data rates up to 26 Gbps while US-48 can support the network speed up to 70 Gbps of non-blocking throughput. Main features of these two switches are described as below.

unifi-switch-ports

Features of US-24 switch:

  • 24 Gigabit RJ45 ports
  • 2 SFP ports
  • 52Gbps switching capacity
  • 250W max. power consumption
  • Rack mountable

Features of US-48 switch:

  • 48 Gigabit RJ45 ports
  • 2 SFP+ ports
  • 2 SFP ports
  • 140Gbps switching capacity
  • 56W max. power consumption
  • Rack mountable

Except the above two switches, there are some other kinds containing US-8-150 (with 8 Gigabit RJ45 ports and 2 SFP ports) and US-16-150W (with 16 Gigabit RJ45 ports and 2 SFP ports). Both switches are available with different models. You can find the details about these models from the following table.

unifi-switch-comparison

SFP and SFP+ for UniFi Switch

If you are wondering which SFP and SFP+ are suitable for UniFi switch, you can get the answer now. You have two choices for getting suitable transceiver modules. Ubiquiti produces single-mode and multimode SFP and SFP+ modules for UniFi switches. UF-MM-1G and UF-MM-1G-S are designed for SFP ports. Three modules such as UF-SM-10G, UF-SM-10G-S, and UF-MM-10G are appropriate for SFP+ ports.

Of course, transceiver modules for UniFi switch are not limited to these original SFP/SFP+. A wide range of third-party transceivers can also work with UniFi switch. The following table will show you some compatible transceivers from FS.COM.

Fiberstore SFPs

ID # Description
20363 Cisco GLC-SX-MM-RGD Compatible 1000BASE-SX SFP 850nm 550m DOM Transceiver
11774 Cisco GLC-SX-MM-RGD Compatible 1000BASE-SX SFP 850nm 550m DOM Transceiver
32140 HPE J4858C Compatible 1000BASE-SX SFP 850nm 550m DOM Transceiver

Fiberstore SFP+s

ID # Description
48895 1m Brocade 10G-SFPP-TWX-0101 Compatible 10G SFP+ Active Direct Attach Cable
36671 1m Brocade 10G-SFPP-TWX-0101 Compatible 10G SFP+ Passive Direct Attach Cable
30849 1m Cisco SFP-H10GB-CU1M Compatible 10G SFP+ Passive Direct Attach Copper Twinax Copper Cable
48884 1m Cisco SFP-H10GB-ACU1M Compatible 10G SFP+ Active Direct Attach Copper Cable
Building Connection

To build the UniFi network, you have to prepare installation screwdriver, at least 1U rack, UTP Cat 5 (or above) for indoor applications and STP Cat5 (or above) for outdoor applications. It’s quite easy.

  • First, install the UniFi switch on the rack with four mounting screws. Then plug one end of the power cord into the power port of the UniFi switch and the other end into the power outlet.
  • Second, connect Ethernet cables from your devices to RJ45 ports of UniFi switch.
  • Third, plug an SFP transceiver into the SFP port if you need to use it. After that, connect the SFP module with a fiber patch cable.
Conclusion

UniFi switches are very commonly used for network connection. To build the network, you don’t need to spend much time on searching cables or modules from the internet. FS.COM offers fiber patch cables and Ethernet cables for your connection. We also provide some transceiver modules definitely compatible for UniFi switch. Every module has been strictly tested to make sure high quality. Just come to our site and you must get the transceiver module you need for your UniFi switch.

Related FS.COM News: FS.COM Offered 100% Compatible Optics for Ubiquiti Platform

Economically Increase Network Capacity With CWDM Mux/DeMux

As the demands for voice, video and data networks are increasing dramatically, more bandwidth and higher transmission speed over long distances are needed. To meet these demands, it means that service providers should depend on more fiber optics which definitely cause more costs for optical devices. But they apply Wavelength Division Multiplexing (WDM) technologies which is a cost-effective way to increase capacity on the existing fiber infrastructure.

CWDM Technology

WDM technology multiplexes multiple optical signals onto a single fiber by suing different wavelengths, or colors, of light. WDM can expand the network capacity using existing fiber infrastructure in an economical way. It includes CWDM (Coarse Wavelength Division Multiplexing) and DWDM (Dense Wavelength Division Multiplexing).

CWDM is a technology multiplexing 16 channels onto one single fiber between the wavelengths from 1270 nm to 1610 nm. It’s designed for city and access network. Since the channel spacing is 20 nm, CWDM is a more cost-effective method to maximize existing fiber by decreasing the channel spacing between wavelengths. CWDM is a passive technology, therefore, CWDM equipment needs no electrical power.

cwdm-channel

Figure 1

CWDM technology has been applied into wide areas, such as CWDM optical transceivers, CWDM OADM and CWDM Mux/DeMux. CWDM Mux/DeMux modules are multiplexers and demultiplexers which provide long distance coverage with premium optical technology to enhance fiber optic systems. It multiplexes signals of different wavelengths on one single fiber and demultiplexes wavelengths to individual fibers. CWDM Mux/DeMux can offer low-cost bandwidth and upgrade the existing system without leading spare costs on more fibers. CWDM Mux/DeMux can hold up to 18 channels of different standards (for example, Fibre Channel, Gigabit Ethernet) and data rates over one fiber optic link without interruption. FS.COM offers a full series of CWDM Mux/DeMux, including 2, 4, 8, 9, 12, 16, 18 channels with or without monitor port and expansion port in 1RU 19” rack chassis or pigtailed ABS module. The following will show you how to use a 18-channel CWDM Mux/DeMux to increase the data rates up to 180 Gbps on a fiber pair.

In Figure2, all Cisco compatible 10G CWDM SFP+ 1270-1610 nm 40km DOM transceivers on the switch are connected with the CWDM Mux/DeMux by LC-LC fiber patch cords. This CWDM Mux/DeMux has 18 channels and is designed as 1 RU rack mount size, covering the wavelengths from 1270 nm to 1610 nm and supporting LC UPC port. During the long distance transmission, only one single-mode armored LC fiber patch cord is needed to achieve 180 Gbps by connecting the two 18-channel CWDM Mux/DeMux. Thus, it greatly saves the cost for increasing the bandwidth on the existing fiber infrastructure.

cwdm-mux-18ch

Figure 2

FMU CWDM Mux/Demux

To increase the capacity, it requires more space and cable management is also a big trouble. So Fiberstore independently researched and developed FMU CWDM Mux/DeMux to solve this problem. We provide FMU 16-ch 1U Rack CWDM MUX/DEMUX specially designed as 2-slot plug and play style, which allows you to add or remove fiber fiber optic cables and plug-in-modules freely according to your applications. There are two separate CWDM plug-in modules. One is high band (1470nm-1610nm) module with an expansion port and the other is low band (1270nm-1450nm, skip 1390nm, 1410nm) module without expansion port. Via this expansion port, channels can be expanded over one pair of fiber without interruption. You can also insert two CWDM Mux/DeMux FMU-plug-in modules without expansion port for two separated 8-channel connections. Besides, you can mix CWDM and DWDM system by adding CWDM Mux/DeMux FMU-plug-in modules and DWDM Mux/DeMux FMU-plug-in modules with matching wavelengths.

2-slot-cwdm-mux2

Figure 3

FS.COM FMU Plug-in Modules

The table below lists both single fiber and dual fiber FMU plu-in modules for 2-slot CWDM Mux/DeMux. You can choose suitable modules according to you specific requirements. Custom service is available, too.

ID# Description
30431 2, 4, 5, 8, 9 Channels, CWDM Mux Demux, Single Fiber, Type A, Plug-in Module
30447 2, 4, 5, 8, 9 channels, CWDM Mux Demux, Single fiber, type B, Plug-and-play module
43553 4 Channels 1490-1610nm Single Fiber CWDM Mux Demux, FMU Plug-in Module, LC/UPC
43554 4 Channels 1470-1590nm Single Fiber CWDM Mux Demux, FMU Plug-in Module, LC/UPC
48393 4 Channels 1470-1590nm Single Fiber CWDM Mux Demux with Expansion Port, FMU Plug-in Module, LC/UPC
48394 4 Channels 1490-1610nm Single Fiber CWDM Mux Demux with Expansion Port, FMU Plug-in Module, LC/UPC
43779 8 Channels 1310-1610nm Single Fiber CWDM Mux Demux, FMU Plug-in Module, LC/UPC
43780 8 Channels 1290-1590nm Single Fiber CWDM Mux Demux, FMU Plug-in Module, LC/UPC
43699 9 Channels 1290-1610nm Single Fiber CWDM Mux Demux, FMU Plug-in Module, LC/UPC
43711 9 Channels 1270-1590nm Single Fiber CWDM Mux Demux, FMU Plug-in Module, LC/UPC
30414 2, 4, 5, 8, 9 Channels, CWDM Mux Demux, Dual Fiber, Plug-in Module
42944 4 Channels 1510-1570nm Dual Fiber CWDM Mux Demux, FMU Plug-in Module, LC/UPC
42972 4 Channels 1270-1330nm Dual Fiber CWDM Mux Demux, FMU Plug-in Module, LC/UPC
42973 4 Channels 1510-1570nm Dual Fiber CWDM Mux Demux with Expansion Port, FMU Plug-in Module, LC/UPC
42945 8 Channels 1290-1430nm Dual Fiber CWDM Mux Demux, FMU Plug-in Module, LC/UPC
43097 8 Channels 1470-1610nm Dual Fiber CWDM Mux Demux, FMU Plug-in Module, LC/UPC
43099 8 Channels 1470-1610nm Dual Fiber CWDM Mux Demux with Expansion Port, FMU Plug-in Module, LC/UPC
Conclusion

If you would like to increase your network bandwidth while spend less money on changing existing infrastructure, CWDM Mux/DeMux is an economical solution. FS.COM brings you high quality CWDM Mux/DeMux module and newly self-developed FMU 2-slot CWDM Mux/DeMux modules & FMU plug-in modules. For detailed information, please visit our site www.fs.com or contact us through sales@fs.com.

Check out All CWDM Transceiver Modules

Coarse Wavelength Division Multiplexing (CWDM) is one of WDM technologies. It uses up to 20 different wavelengths for data transmission over a single fiber. CWDM applies coarse wavelength grid and it allows low-cost, uncooled lasers, which makes CWDM systems less expensive and consuming less power. There are many optical equipment applying CWDM technology. This article will introduce CWDM optical transceivers.

fs-cwdm-sfp

CWDM Transceivers

CWDM transceiver is a kind of optical modules employing CWDM technology. CWDM transceivers enable connectivity between existing network equipment and CWDM Multiplexers/DeMultiplexers (Mux/DeMux). When used with CWDM Mux/DeMux, CWDM transceivers can increase network capacity by transmitting multiple data channels with separate optical wavelengths (1270 nm to 1610 nm) over the same single fiber. CWDM transceivers are also useful for reducing network equipment inventories by eliminating the need to maintain surplus units/ devices of various fiber types for network repairs or upgrades. CWDM transceivers include four types, such as CWDM SFP, CWDM SFP+, CWDM XFP and CWDM X2. The following shows more details about these CWDM transceiver modules.

CWDM Transceiver Module Types

CWDM SFPs are hot-pluggable transceiver modules. CWDM SFP transceivers are SFP MSA (Multi Sourcing Agreement) and IEEE 802.3 & ROHS compliant. CWDM SFPs can provide data rates including 1G, 2G and 4G over the link distance of up to 200 km by connecting with duplex LC single-mode patch cords. CWDM SFPs transmit multiple data channels by combining separate optical wavelengths onto a single fiber to increase network capacity. CWDM SFPs can be used to support the CWDM passive optical system combing CWDM OADM (optical add/drop multiplexer). When CWDM SFPs used with transponders and media converters, these two optical components offer convenient method to convert existing legacy equipment with standard wavelengths or copper ports to CWDM wavelengths.

CWDM SFP+ offers service providers and enterprise companies an easy way to get a scalable 10 Gigabit Ethernet network. It is a cost-effective solution for 10 Gigabit Ethernet applications in campus, data center and metropolitan area access networks. CWDM SFP+ can transport up to eight channels of 10 Gigabit Ethernet over single-mode fiber strands at the wavelengths including 1610 nm, 1590 nm, 1570 nm, 1550 nm, 1530 nm, 1510 nm, 1490 nm, and 1470 nm. CWDM SFP+ solution is helpful to increase the bandwidth of an existing 10 Gigabit Ethernet optical infrastructure without adding new fiber strands. The solution can be used in parallel with other SFP+ devices on the same platform.

CWDM XFP is a hot-pluggable module designed in Z-direction and mainly used for typical routers and switch line card applications. CWDM XFP transceivers are designed for Storage, IP network and LAN. They comply with CWDM XFP MSA. CWDM XFPs cover the wavelengths from 1270 nm to 1610 nm. These modules can support the distance up to 100 km, which depends on the wavelengths, fiber types and the CWDM Mux/DeMux insertion loss.

CWDM X2 transceiver is designed for CWDM optical data communications such as 10G Ethernet and 10G Fibre Channel applications. CWDM X2 wavelengths are available from 1270 nm to 1610 nm. CWDM X2 is MSA Compliant. It supports the transmission distance up to 80 km connecting with duplex SC single-mode fiber cable.

Conclusion

CWDM technology provides a low-cost solution which allows scalable and easy-to-deploy Gigabit Ethernet and Fibre Channel services. CWDM transceivers enable a more flexible and highly available multi-service network with the combinations of CWDM OADMs and CWDM Mux/DeMux. FS.COM offers all kinds of CWDM transceivers like CWDM SFP, CWDM SFP+, CWDM XFP, CWDM X2. Our CWDM transceivers are compatible with most famous brands and all these optics have been fully tested to make sure high compatibility. For more details about Fiberstore CWDM transceivers and other CWDM equipment, please visit our site www.fs.com or contact us via sales@fs.com.

What’s the Difference Between Cisco GLC-SX-MM and Cisco GLC-SX-MMD?

Cisco 1000BASE SFPs keep a huge market share in the optic area. Cisco SFPs offer users optical solutions for long distance and short distance transmission. For short distance, there are 1000BASE SX SFP, such as Cisco GLC-SX-MM and Cisco GLC-SX-MMD. Though these two modules have great similarity, they are actually different. Then what’s the difference? This article will introduce details of Cisco GLC-SX-MM and Cisco GLC-SX-MMD SFP transceiver modules.

glc-sx-mm

Cisco GLC-SX-MM

Cisco GLC-SX-MM 1000BASE-SX SFP is a duplex transceiver for short distance transmission, operating at the wavelength of 850 nm at the data rate of 1Gbps. It connects with OM2 multimode LC patch cords supporting up to 550 meters. The hot-swappable 1000BASE-SX SFP is compatible with the IEEE 802.3z 1000BASE-SX standard. And it’s RoHS compliant.

Cisco GLC-SX-MMD 1000BASE-SX SFP is another type of hot-swappable transceiver for short reach data transmission. This 1000Base-SX transceiver supports data rates up to 1.25Gbps. Same to Cisco GLC-SX-MM SFP, it also has duplex LC interference. Connecting with OM2 MMF, it can support the distance up to 550 meters. It’s compliant with SFP Multi-Source Agreement (MSA) standards. Cisco GLC-SX-MMD is composed of five parts: the LD driver, the limiting amplifier, the digital diagnostic monitor, the VCSEL laser and the PIN photo-detector. The Digital Diagnostic Monitoring (DDM) function is its special feature.

What Is DDM?

From the above content, you can see the main difference of these two transceivers is the DDM. When you buy SFP transceivers in the market, you may come across this selection difficulty whether to choose an SFP with DDM or not. So what’s DDM?

DDM is short for digital diagnostic monitoring. It’s also known as diagnostic optical monitoring (DOM). Diagnostic monitoring interface outlined in the SFF-8472 MSA is an extension of the serial ID interface defined in the GBIC specification, as well as in the SFP MSA. Today, many SFP transceivers have the function of digital diagnostics monitoring according to the industry standard MSA SFF-8472. It provides the important information about the status of the transmitted and received signals. This approach allows for better fault isolation and error detection.

DDM mainly plays the role in two sides: monitoring and warning. It monitors detailed information about a transceiver. And it offers a system of alarm and warning flags which alert the host system when particular operating parameters are not in line with the normal operating parameters set by the factory. So users can find out the fault isolation according to outcomes of DDM, and predict failure possibilities and prevent such fault.

Real-time monitoring—With a 2-wire serial bus (also known as “I2C” or “I2C” protocol), digital diagnostics can monitor the SFP module’s temperature, receiver power, transmitter bias current, and transmitter power by a microcontroller inside the transceiver. Usually, the output of the physical value of each parameter is an analog voltage or current from the Trans impedance amplifier, the laser driver, or the post amplifier. Then the digitalized value can be processed as part of a control loop, trigger an alarm, or just record the data into a register.

Calibration and warning thresholds—In addition to generating digital readings of internal analog values, DDM can also produce various status bits. Calibration and warning thresholds value is made during the device manufacturing process. Comparing current values generated by DDM and factory preset limits, users will know whether or not the transceivers have met the desired operation requirements.

FS.COM Cisco Compatible 1000BASE-SX SFP Solutions

FS.COM brings Cisco compatible 1000BASE-SX SFPs including GLC-SX-MM and GLC-SX-MMD SFPs.
The 1000BASE-SX standard optics are developed to support lower cost multi-mode fiber runs in horizontal and shorter-length backbone applications. The following figure shows two Cisco GLC-SX-MM SFP transceivers are connected by an LC MMF patch cable.

glc-sx-mm-connection

Item Part No. Description
a. 11774 Cisco GLC-SX-MM Compatible 1000BASE-SX SFP 850nm 550m Transceiver
b. 43132 2M LC UPC to LC UPC Duplex 2.0mm PVC(OFNR) OM2 Fiber Optic Patch Cable
b. 11774 Cisco GLC-SX-MM Compatible 1000BASE-SX SFP 850nm 550m Transceiver

Note: you can use GLC-SX-MMD SFPs to replace GLC-SX-MM SFPs for shorter-length backbone application, too.

Conclusion

This article introduces Cisco GLC-SX-MM and Cisco GLC-SX-MMD SFP transceivers. Both kinds can realize short distance connection. The difference is that GLC-SX-MMD has DDM function while the other has no. So it’s up to you to decide whether you need DDM function to monitor parameters of the SFP. Fiberstore supplies optical transceivers with DDM and without DDM to satisfy customers’ different needs. If you need more information, please contact us via sales@fs.com or visit our site www.fs.com.

How to Choose Satisfying SFP Transceiver Modules?

Today, various types of 1000BASE SFP transceiver modules can be found in the market. But should you choose one for long distance and short distance application? Or buy copper optics? Which brand is the most reliable and cost-effective, Cisco, HP, Avago, etc.? Do the third-party optics operate as well? So how to find satisfying SFP transceiver modules which suit your switch most? Now keep reading this article and you will get the method. Take three most common types of Cisco SFP modules as example.

Three Types of Cisco SFP Modules

This GLC-SX-MM 1000BASE-SX SFP transceiver module is a duplex SFP transceiver for optical communications. It can support the data rate of 1Gbps reaching the distance up to 550 meters over OM2 multimode cable. The GLC-SX-MM transceiver operates at 850nm wavelength. It’s compatible with the IEEE 802.3z 1000BASE-SX standard, which is usually applied in Gigabit Ethernet. There are also GLC-SX-MMD and GLC-SX-MM-RGD SFP modules. “D” of GLC-SX-MMD means Digital Optical Monitoring (DOM) support which supports transceiver monitoring and troubleshooting operations. “RGD” of GLC-SX-MM-RGD refers to rugged (RGD) transceiver module, which features enhanced ESD (electrostatic discharge) protection, and extended operating temperature range.

cisco_glc-sx-mm

The Cisco GLC-LH-SM 1000BASE-LX/LH transceiver is an LC duplex SFP transceiver applied for Gigabit Ethernet network. This module is designed for both short distance and long distance data transmission. If connecting with single-mode fiber patch cable, it can reach up to 10 km. If connecting with multimode fiber patch cable, it can go up to 550 meters. The GLC-LH-SM transceiver operates at 1310nm wavelength. This transceiver is compliant with Multi-Source Agreement (MSA) standards. LX means long wavelengths and LH is short for long haul. 1000BASE-LX is the Gigabit Ethernet standard specified to work over a distance of 5 km over single-mode fiber cable. 1000BASE-LH and 1000BASE-LH/LX are often used by the manufacturers. Thus, we often see 1000BASE-LX/LH instead of 1000BASE-LX.cisco-glc-lx-sm

The GLC-T 1000BASE-T SFP is a hot-swappable input/output device that plugs into a Gigabit Ethernet port or slot, linking the port with the network. It supports the max data rate of 1000Mbps reaching 100 meters links over copper cables such as Cat5, Cat5e or Cat6a. This transceiver is fully compliant with the MSA and 1000BASE-T standards as specified in IEEE 802.3-2002 and IEEE 802.3ab.

glc-t

Original or Third-party?

“Third-party” means a supplier (or service provider) who is not directly controlled by either the seller (first party) or the customer/buyer (second party) in a business transaction. For fiber optics industry, all fiber optic transceivers are defined by Multi-Source Agreement (MSA). MSAs strictly define the operating characteristics of fiber optic networking equipment. Therefore, as long as a manufacturer complies to MSA guidelines, their transceiver modules will function and operate identically to other manufacturer’s MSA-compliant transceivers. For example, the above fiber optics like GLC-SX-MM, GLC-LH-SM and GLC-T made by FS.COM are completely compatible with Cisco networking equipment.

Whether to buy original or compatible SFPs may depend on the the cost. Original SFPs are much more expensive than the third-party modules. Using the third-party optics can absolutely help you save the cost. Considering the third-party SFPs from the third vendor, you may worry about the quality and compatibility. As to Cisco compatible GLC-SX-MM, GLC-T, GLC-LH-SM SFP modules, lots of vendors can produce these optics. So it’s necessary to ask information about OEMs and compatibility test from your third-party optics supplier.

Conclusion

From the above introduction, you must have a well understanding about three common Cisco 1000BASE SFPs. When choosing SFP modules, you should consider whether it matches the switch port and the cable you have prepared. If you have multimode cable, then you can choose GLC-SX-MM 1000BASE SFP. If you use single-mode fiber cable, you should select GLC-LH-SM 1000BASE SFP. While if your cable is copper category, you have to use GLC-T 1000BASE-T SFP. On condition that your budget doesn’t allow you to buy original brand module, you can buy the third-party optics from FS.COM with Cisco, Avago, HP and other compatible brands. All the optics have gone through test for 100% compatibility. Any question, please contact us via sales@fs.com.