Fiber Optic Components for Building 10G Data Centers

10 Gigabit Ethernet is a telecommunication technology that can support the network speed up to 10 billion bits per second. It’s also known as 10GbE. As 10GbE greatly increases bandwidth, many companies start to upgrade the data centers to meet their growing needs. How to build a 10GbE data center? What kind of equipment will be used except the switch? This article will recommend you some basic 10G solutions.

10G SFP+ Modules

10G SFP+ (small form-factor pluggable plus) modules are hot swappable transceivers that plug into SFP+ slots on switches and support 10G Ethernet. With small form factor, SFP+ transceivers can ensure low power disruption and high port density. Since it’s hot pluggable, the transceiver modules can be added or removed without interrupting the whole network. And SFP+ modules deliver data transmission speed of up to 10Gbit/s, which is 10 times faster than Gigabit Ethernet.


Currently, a wide variety of SFP+ modules can be purchased in the market. For the long distance transmission, modules include SFP-10GBASE-LR, SFP-10GBASE-ER, SFP-10GBASE-ZR, CWDM SFP+ and DWDM SFP+. For the short distance transmission, there are modules like SFP 10GBASE-SR, SFP-10GBASE-LRM. Brands are also versatile such as Cisco, Juniper, Arista, Brocade, etc. To get modules with lower costs, you can pick third-party transceivers which are compatible with these original brands.

Patch cables contain both fiber and copper types. Fiber patch cords, as one of the data transmission media, enjoy great popularity because they have large transmission capacity, strong anti-electromagnetic interference, high security and fast speed. LC fiber patch cord is one of the most common cables for 10G network connection, covering single-mode and multimode categories respectively for data transmission over long distance and short distance. To increase panel density, flexible HD LC push-pull tab fiber patch cable is designed. With its unique design, this patch cable allows the connector to be disengaged easily from densely loaded panels without the need for special tools and give users easy accessibility in narrow areas for data center deployment applications. Another special LC patch cord is uniboot patch cord. It utilizes a special “round duplex” cable that allows duplex transmission within a single cable. It’s good for saving cable management space comparing to standard patch cords.


10G SFP+ direct attach cable (DAC ) is a cost-effective solution for 10G Ethernet. It’s a low-power alternative to optical SFP+ system. The 10G SFP+ cables provide low-cost and reliable 10G speed with either copper cables over distances up to 10 m or active optical cables reaching distances up to 100 m. Because there is no need for spending on fiber optic transceivers and cables. This kind of cables contain 10G SFP+ copper cables, both passive and active and active optical cable (AOC). Active copper cable and AOC are designed for long distance connection, while passive copper cable is for short distance, such as the interconnection of top-of-rack switches with application servers and storage devices in a rack.


Fiber Enclosure

Fiber enclosure is an equipment you must have in data centers. This component is used to provide a flexible and modular system for managing fiber terminations, connections, and patching in high density data center application to maximize rack space utilization and minimize floor space. Fiber enclosure can be divided into different configurations like rack mount (available in 1U, 2U, 3U, 4U), wall mount, indoor or outdoor. The rack mount enclosure come into three flavors. One is the slide-out type and the other two are removable type and swing out type. Fiberstore introduces high density fiber enclosures with 48 ports, 96 ports and even 288 ports loaded LC FAPs (fiber adapter panels) in 1RU or 4RU rack mount for 10G solutions. Or if you already have the unloaded fiber enclosures, you just need to buy fiber adapter panels.



To build a 10GbE data center, you have to prepare the components, for instance, 10G SFP+ modules, LC patch cables, 10G SFP+ cables, fiber enclosures, etc. You may also need other instruments for testing and cable organization. And all those equipment can be got from FS.COM with higher quality but fewer costs. For more information, you can contact us via

Cat6 and Cat6a Copper Cable Differences

As the data speeds increase from Fast Ethernet to Gigabit Ethernet, cables for the network connection are also required to be improved. Cat6 and Cat6a are two kinds of copper cables for Gigabit Ethernet. “A” is short for “augmented”. Cat6a is an enhanced Cat6 cable. Do you know which you should use, Cat6 or Cat6a? Could these two categories replace each other? Now this article will tell some of their differences from several sides.



It’s not difficult to identify Cat6 and Cat6a cables from appearance. If you look at the jacket carefully, you will find the identifiers printed as Cat6 and Cat6a. You can also distinguish these two cables from thickness. Cat6a cables are much thicker than Cat6 cables.


Copper cables have shielded twisted pair (STP) and unshielded twisted pair (UTP). STP cable means there is one or more additional jackets surrounding the inner twisted wire pairs for insulation. The shielding is beneficial for protecting cable from electromagnetic interference (EMI). (For more information about STP vs. UTP difference, you can refer to my blog “STP vs. UTP, Which One Is Better?” .) Cat6 and Cat6a cables also include these two types. Though shielded Cat6 cables are available in the market, unshielded versions are easier to get. On the contrary, shielded Cat6a cables are more common.

Transmission Distance

Cat6 cable can support the transmission distance up to 100 meters at the data rate of 10, 100, 1000 Mbps. But it can support only 55 meters at the speed of 10 Gbps when crosstalk is in an ideal situation. What’s worse, the transmission distance can only reach 33 meters when the crosstalk is high. So the lengths of Cat6 cables are influenced by the network speed and crosstalk conditions. While Cat6a cables can support the distance over 100 meters at the speed of 10 Gbps.


Take Fiberstore as an example, the average cost of 1m Cat6 cable is about 1.00 US$ and more than 3.00 US$ for 1m Cat6a cable (cables maybe more expensive on other sites.). The more cables you purchase, the bigger the price difference will be. And the price difference is not only caused by the cable. Other matched connection components should also be considered.


As mentioned above, Cat6a cable is thicker and heavier than Cat6 cable. Cable trays can not hold as many Cat6a cables as Cat6 cables. When laying cables on the trays, you should better not bend cables too much as this can damage the wiring and influence network performance. The minimum radius that a cable can be bent without damaging is called the bend radius. The lower the bend radius, the more you can bend the cable. As Cat6a cable is bulkier than Cat6, Cat6a cable has a larger bend radius than Cat6 cable.

Which One Should You Buy?

Although Cat5e cable can meet the current needs in your home or office, higher bandwidth will be required in the near future. So you should upgrade your network with Cat6 or Cat6a cables which can provide greater bandwidth. At that time, you need to figure out which one to buy. If you install cables in a small room or business offices where cables might get close to one another, then Cat6a is better than Cat6 due to the alien crosstalk. Cat6 cables especially the unshielded cables, are much more prone to alien crosstalk than Cat6a, which uses superior insulation to protect its wiring.


From this article, you can make a clear identification of Cat6 and Cat6a cables. When you plan to purchase cables, you need to consider their differences like shielding, transmission distance, cost, durability, etc. Hope you can choose the suitable cable and build a high performance network.

STP vs. UTP, Which One Is Better?

When you prepare to buy Ethernet cables, you have to choose between STP (shielded twisted pair) and UTP (unshielded twisted pair) cables. That’s really difficult to decide if you don’t have enough knowledge of these two kinds of cables. Do you want to know more? Read this article and you will find the answer.

Why Are There STP and UTP Cables?

In data communication, electromagnetic interference (EMI) exists in cables. EMI, also called radio frequency interference (FRI), is a disturbance. This disturbance is caused by an external source affecting an electrical circuit by electrostatic coupling, electromagnetic induction, or conduction. The external source can be natural or man-made. For example, the natural sources include the sun, thunder storms, etc., while the man-made sources are vehicle ignition systems, cell phones, etc. EMI may cause data error and influence the transmission quality of cabling systems. In consideration of decreasing or avoiding EMI, shielding is one of the methods applied to protect cabling systems.

What Are STP Cables?

STP cable has a shield inside which is composed of copper tape, a layer of conducting polymer or a braid (made of copper or aluminum mostly). There are different types of shielding, such as braided shield, foil and screening. That makes different levels of shielding, including STP, SSTP (screened shielded twisted pair), FTP (foil twisted pair). The shield can be applied to each one of the pairs in a cable or to all pairs together.


Advantages of STP Cables

First, the shield of STP cables can reduce EMI. It’s good for increasing data transmission quality in buildings containing microwave equipment, HVAC (Heating Ventilation Air Conditioning) systems or radio transmitters. It blocks interference generated from devices such as power tools and vacuum cleaners. Although UTP cables are still able to reduce interference, their performance is not as good as STP cables.

Second, STP cables can reduce crosstalk with proper installation and maintenance. STP cables can resist signals from passing through the outer coating and entering nearby wires by accident because of the special cable constructure. STP cables are quite necessary for dealing with crosstalk especially when your building contains numerous network devices.

What Are UTP Cables?

UTP cables don’t have shielding to reduce interference. UTP cables reduce EMI through the way that the pairs are twisted inside the cable. Thus, UTP cables are lighter and thinner than STP cables.


Advantages of UTP Cables

First, easier to install and maintain. UTP cables contain no shields and they are thinner than STP cables, which is easier for cable installation and maintenance, particularly in limited space. While the shields of STP cables are quite fragile and rigid. If the shield suffered damage, cabling systems are likely to be affected by interference. What’s worse, it’s not easy to be repaired and needs special handling.

Second, more flexible. UTP cables are comparatively lighter. On one side, it makes the installation, transport and maintenance work easier. On the other side, it makes UTP cables more suitable to be used in narrow space.

Third, fewer cost. UTP cables are cheaper than STP cables. So are the related hardware. Besides, as mentioned above, UTP cables are easy to install and maintain. You don’t have to spend too much money on maintenance since UTP cables don’t rely on an outer shield. So they are beneficial to save you investment on installation and maintenance.


Due to different characteristics, the two types of cables are used in different environment.

STP cables are often used in situations nearby equipment causing EMI. For example, airports, medical centers and factories have lots of machines that can produce interference, so STP cables are typically applied. STP cables are also useful when cables must be run next to fluorescent lights, microwave ovens or powerful motors. What’s more, STP cables can be used in outdoor settings. Some people connect outdoor surveillance cameras to STP wiring. In that way, the video feed can avoid the interference generated by vehicles and power lines. And it can stop criminals from using jammers to interrupt communications between cameras and indoor monitors or recording equipment.

UTP cables are suitable to be used in offices and homes. They are less expensive than STP cables. So if the interference or crosstalk is not your main concern, you are suggested to choose UTP cables for saving you cabling cost. Remember not to select UTP cables if your place is full of powerful magnetic fields which can slow down the network speed or cause the network failure. Therefore, you’d better carefully evaluate the potential sources of interference.


Choosing the right cable can improve your network performance and extend the life span of your equipment. Before making the decision, it’s important to get well known of STP and UTP cables. You must know exactly each one’s advantages and application areas. If you need better anti-interference capabilities, you can select STP cables. If you put cost as the first factor, you may choose UTP cables. For both kinds of cables, you can find in FS.COM. Any question, please contact us via

Which Ethernet Cable Should You Choose?

Ethernet cable is one of the media transmitting signals to a home or business network place. Although the world is going wireless today, Ethernet cable is still used in many situations due to its advantages of fast speed, high reliability and security. But when you decide to buy the Ethernet cables, you will get confused about which category to choose. This article will discuss how to make your decision among these Ethernet cables like Cat5, Cat5e, Cat6 and Cat7.

Ethernet Cables Types
Cat5 Cable

Cat5 cable can handle 10/100 Mbps speed (Fast Ethernet) at the bandwidth up to 100 MHz. Cat5 cable is the oldest of these three kinds of cables. Over the years, Cat5 cable was used majorly in networking especially when pairing older routers, switches and other myriad networking devices. Nowadays it’s not used for too many installations. But it can support gigabit speeds if the cable is shorter sometimes.


The letter “e” means “enhanced”. As the name says, Cat5e is an improvement on Cat5 cable. Currently it’s the most popular cable used in new installations. It’s designed to support 1000 Mbps or gigabit speed. It can also greatly reduce the crosstalk. The crosstalk is the interference existing sometimes between wires that are sealed inside a cable. With this feature, Cat5e can better keep signals on different circuits or channels from interfering with each other. In a word, Cat5e cable can provide a faster, more reliable and steady network than Cat5. And Cat5e is also compatible with Cat5 cable.


Cat6 is an improvement over Cat5e. It has more sophisticated constructure and can support the speed up to 10 gigabit and the bandwidth up to 550 MHz over long distances. Cat6 is a good choice for those who want to install future-proof network. But Cat6 cable is not very good for the applications at home. This kind of cable is recommended for large organizations which deal with pretty bulk files.


Cat7 cable is designed to be used in Gigabit Ethernet and can support bandwidth up to 600 MHz. It greatly improves the capacity and reliability of Cat6. Another big advantage of Cat7 is the shielding of its twisted pairs, which significantly improves noise resistance. Cat7 is thought as the most durable and has a longer lifespan than Cat 5 and Cat 6. It’s the best choice for future use. But it’s comparatively expensive.


Which One Should You Choose?

First, you need to think about the question seriously how you like your current network speed. If you are satisfied with the current network speed, you don’t need to upgrade it. But if your hardware can handle 1 Gigabit and you are still using Cat5 cable, then you should better upgrade your Ethernet cables. You may choose Cat5e cable which is enough for your network needs. Or you can select Cat6 cable.

Second, you should know that network speed is not the same to internet speed. There is a chance that even though you upgrade your Ethernet cable, your internet speed won’t change too much. As it’s affected by many other factors. However, upgrading networking cables have a tremendous effect on file transfer speeds between computers. So to emphasize, when buying Ethernet cable, you should also consider your hardware compatibility.


From this article, you can find it’s not very hard to decide which kind of Ethernet cable to use. To make the right decision, it depends on your situations. Usually Cat5 or Cat5e cable is enough for home network use. If you transfer lots of data over your network, then you can upgrade your network cables from Cat5 to Cat5e or Cat6 to guarantee your network speed. But if you are satisfied with your current network speed, you don’t need to replace Cat5 with other cables. Of course, the cost is also an important factor. So if budget allows, Cat7 is a nice choice. At last, no matter what kind of cable, please notice that the Ethernet cable should be less than 100 meters in length to achieve higher efficiency.

Advice on Patch Cable Selection for Optical Transceiver

Fiber optic network connection can’t be achieved without fiber optic transceivers and fiber patch cables. Fiber optic transceivers vary from transmission media, interface, transmission distance, data rate, and brand, for example, SFP for 1000Mbps, SFP+ for 10G, QSFP+ for 40G, CFP and QSFP28 for 100G. It’s not difficult to identify these transceivers. But when you connect the transceiver to the patch cable, many details need to be noticed. This article will give you advice on how to choose the suitable patch cable for your transceivers.

Transmission Media—Copper & Fiber

According to transmission media of fiber optic and copper, transceivers can be divided into two kinds, copper based transceivers and fiber optic based transceivers. MSA has defined several copper based transceiver like: 100BASE-T, 1000BASE-T and 10GBASE-T. Copper transceivers are available in GBIC, SFP and SFP+ form factors, which usually has a RJ45 interface. So Cat5/6/7 cables are typically used to connect with the transceivers. Maybe Cat8 will be researched and developed to support higher data rate up to 40G sooner or later.


As to fiber optic transceivers, things are more complex. For that fiber optic transceivers require different fiber patch cords which have more types. Fiber patch cables cover single-mode and multimode. Single-mode patch cable can be classified into OS1 and OS2. While multimode cables can be divided into OM1, OM2, OM3, OM4 cable. Different cables are used in different applications. Single-mode cable can support long distance transmission and multimode cable for short distance link. If the transmission distance is shorter than 500 meters, multimode patch cable is suggested. For long distance transmission, single-mode transmission is suggested. You fiber-patch-cordsshould also consider that the transmission data rate can also affect the transmission distance. Let’s look at the following point.

Supported Distance and Data Rate

MSA has defined a variety of transceivers that can support different transmission distances and data rates. When you buy a fiber optic transceiver, you will find the data rate, wavelength, distance, etc. on its labeling. The following table show the basic information of most often used transceivers and supported cable type.

Description Wavelengh Data Rate Cable Type Distance
SX 850nm 1G MM 500 m
LX 1310nm 1G SM 8 km
EX 1310nm 1G SM 40 km
ZX 1550nm 1G SM 70 km
SR 850nm 10G MM 300 m
LR 1310nm 10G SM 10 km
ER 1550nm 10G SM 40 km
ZR 1550nm 10G SM 80 km
SR4 850nm 40G MM 100 m
SR10 850nm 100G MM 100 m
LR4 1310nm 40G SM 10 km

As mentioned before, single-mode patch cable is better for long distance transmission and multimode patch cable for short distance transmission. Actually single-mode patch cords can be used for different data rates in both long and short distances. But single-mode fiber optic cable will cost more. To achieve reliable performance in short distances with cost effective solutions, you should know the performance of multimode fiber optic cables. The following chart provides the detailed transmission distances and data rates information for different multimode fiber optic cables over wavelength of 850 nm for your reference.

Fiber Type 1G 10G 40/100G
OM1 300 m 36 m N/A
OM2 500 m 86 m N/A
OM3 1 km 300 m 100 m
OM4 1 km 550 m 150 m
Transceiver Interfaces

The selection of patch cable for transceiver should also consider the interfaces through which patch cords is connected to the transceiver. In addition, transceiver usually used one port for transmitting and one port for receiving. Generally, fiber optic transceivers usually employs duplex SC or LC interfaces. However, for BiDi transceivers only one port is used for both transmitting and receiving. Thus, simplex patch cord is used with BiDi transceiver.

Some 40G/100GBASE QSFP+ transceivers used MTP/MPO interfaces, which should be connected to the network with multi-fiber patch cords attached with MTP/MPO connectors. If these ports are used for 40G to 10G or 100G to 10G connection, then fanout patch cable should be used. For example, a MTP to 8 LC fanout cable can splitter 40G data rate to four 10G data rate.


Next time when you select patch cords for your fiber optic transceivers, you can consider these factors like transmission media, transmission data rate and distance, transceiver interfaces. FS.COM offers a wide range of fiber optic transceivers and patch cords. Custom service is also available. Any problem, please contact us via

How to Make Your Own Ethernet Cables?

Ethernet patch cables are indispensable for network. However, Ethernet patch cables are more expensive than bulk cables and the pre-terminated lengths are not always that you need. So it’s quite necessary to know how to wire Ethernet cable by yourself. This article will show you detailed steps of making your own Ethernet patch cable.

Materials You Need
Bulk Ethernet cable

Usually people will choose Cat5e cable. Cat5e cable is a little different from Cat5. It can handle data rate up to 1000Mbps. Cat5e is suitable for Gigabit Ethernet and experiences much lower levels of near-end crosstalk (NEXT) than Cat5. So in most applications, Cat5 has been superseded by Cat5e. Except Cat5e, you may also choose Cat6 cables which have better performance. Cat6 cable has twice the bandwidth of Cat5. It’s ideal for supporting 10 Gigabit Ethernet. Select the cable type and then buy the lengths of the cable you need.

RJ45 Connectors for Cat5e or for Cat6

RJ45 connectors are often used for telephone and network. RJ45 connectors include a variety of types for Cat 5e or Cat6, such as shielded, strain relief boots, 2 prong or 3 prong, etc. Whatever, you need to select the one suitable for your application. FS.COM provides plenty of RJ45 connectors meeting a high standard of safety quality.


RJ-45 Crimping Tool

RJ45 crimping tool is designed to quickly, strip, crimp and cut the wires in an easy operation. FS.COM supplies various types of high quality crimping tools. With this kind of tool, you can get precise and reliable terminations every time.


Steps for Wiring Ethernet Cable
Step 1. Strip Outer Sheath

Use your stripper on your crimping tool to strip 1 inch (2.5 cm) sheath from the end of the cable. Insert the cable into the stripper portion of the crimping tool and squeeze it tight. When squeezed, rotate the crimping tool around the cable a full 360°. At last, pull away and the sheath will be stripped. If you break the internal twisted wires by accident, just cut the broken wire and strip again. So when you measure the cable length, you should better leave spare inches in case things happen like this.

Step 2. Untwist and Arrange Wire

After stripping the sheath, you can find 8 color-coded wires inside. Then you need to untwist the internal wires and arrange them into a proper wiring scheme for RJ45 connector. There are two kinds of color codes standards: T568A and T568B. The color order is important to get correct. No matter which standards you choose, you should arrange the color-coded wires in the same order on both sides. Here recommend you T568B color-coded wiring. The following are about pins and colors used in T568B standards.


Step 3. Insert the wire into RJ45 connector

Before insert the wire into RJ45 connector, you need to cut down the wire to fit in the connector. Bring the wires together and cut them down in an even line with the cutting tool on the crimping tool. Then insert the wires into the connector in the right order. Ensure each wire fits into each groove in the connector. The wires should be inserted until the sheathing is inside the connector, just beyond the crimp portion of the connector.


Step 4. Crimp

Put the connector into the crimping tool carefully until the connector can’t go in any further. Squeeze the crimping tool very tightly and release. Then squeeze the the crimping tool again to make sure that all of the pins are pushed down on the connector. When finishing crimping, check that if all pins are all crimped down. If the pins are all down, tug the connector slightly to make sure that it is securely attached to the wire.


Step 5. Test

Before installing the cable, you should better take a test with an Ethernet cable tester. If the Ethernet cable doesn’t work, look closely at each end and see if you can find the problem. Usually the problem is caused because a wire ends up in the wrong place or one of the wires makes no contact or poor contact. You should also check if the color is in the right order. If the color order is wrong, then cut the end off and start again.


Sure, you can buy Ethernet cables from the store directly. But if you need to make your own cable with special lengths, then you are lucky to read this article. Remember that the Ethernet cable should be no more than 100 meters or 328 feet. Because the cable performance will be influenced by the over length. For bulk cables, RJ45 connectors, crimping tools, and network testers, etc., you can get all from FS.COM. Hope you can make your own Ethernet cable successfully.

How to Distinguish T568A and T568B of RJ45 Ethernet Cable Wiring?

Ethernet cable can be easily found in our daily life. Ethernet cable is color-coded if you look at it carefully. Color-coded wiring sequences exist as a cabling industry standard. Thus, cabling technicians can save a lot of time of doing cable termination on both ends by following others’ work without guessing or deciphering the function and connections of each wire pair. This article will tell the T568A and T568B standards that the Ethernet cable jack wiring follows.

What Are T568A and T568B Standards?

RJ45 conductor data cable contains 4 pairs of wires. Each one consists of a solid colored wire and a strip of the same color. There are two wiring standards for RJ45 wiring: T568A and T568B. T568A and T568B are the two wiring standards for RJ45 connector data cable. T568A was specified by TIA/EIA-568-A wiring standards in 1995. Later it was replaced by the TIA/EIA 568-B standard in 2002 and has been updated since. Both standards define the T568A and T568B pin-outs for using unshielded twisted pair cable and RJ45 connectors for Ethernet connectivity. These two standards and pin-out specification appear to be related and interchangeable. But they still have differences and should not be used interchangeably.


RJ45 Color-Coded Scheme

RJ45 cables have 8 color-coded wires and the plugs have 8 pins and conductors. Eight wires are used as 4 pairs, each representing positive and negative polarity. The following figure shows pin and colors used in the T568A and T568B standards.


Straight-through and Cross-over Connections

The wiring standards T568A and T568B are used to create a cross-over cable (T568A on one end, and T568B on the other end), or a straight-through cable (T568B or T568A on both ends).

Straight-through cables are used to connect computers to a Ethernet switch. The RJ45 cable uses only 2-pairs of wires: orange (pins 1, 2) and green (pins 3, 6). Pins 4, 5 (blue) and 7, 8 (brown) are not used. Straight-through cable connects pin 1 to pin 1, pin 2 to pin 2, pin 3 to pin 3, and pin 6 to pin 6.


Cross-over cable is used to network two computers without a Ethernet switch (hub). Cross-over cable connects pin 1 to pin 3, pin 2 to pin 6, pin 3 to pin 1 and pin 6 to pin 2. This kind of cable is used to connect TX+ (transmit) to RX+ (receive), and TX- to RX-. The unused pins are generally connected straight-through in both straight-through and cross-over cables.


Which Standard Should You Choose?

Actually there is no electrical difference between the T568A and T568B wire sequences. So it’s hard to tell which one is inherently better. The difference between the two is the position of the orange and green wire pairs. It is preferable to wire to T568B standards if there is no pre-existing pattern used within a building.

In fact, both standards are acceptable in most cases. You can use either one as long as you’re consistent. T568B is the standard followed by the majority of Ethernet installations in the United States for RJ45 color code. It is the more common standard used when cabling for businesses. While T568A is the majority standard followed by European and Pacific countries. It is also used in all United States government installations. So when you face the selection, you may make the decision on the country you work in and what types of organizations you install for.


T568A and T568B are the two wiring standards for RJ45 connector data cable specified by TIA/EIA-568-A wiring standards document. Color-coding is part of the standards. If modifying the Ethernet cables improperly, signal loss of network connectivity can be caused. So please insure all connectors and cables are modified in accordance with standards when you do cable terminations.

Secrets of Choosing Fiber Rack Mount Enclosure

Fiber rack mount enclosures can provide a high-density solution for inter-connects or cross-connects between backbone horizontal cable and active equipment. Enclosures allow for easy field termination of connectors or installation of pre-terminated solutions, and are ideal for high-density fiber applications in data centers, equipment rooms, and central offices. Fiber rack mount enclosures come in different configurations. You may find fiber enclosures in the market with different sizes, slide-out or lid type, fixed front panel or removable front panel, splice tray or preterminated. Among so many types, you have to choose one that suits your application the most. So how to make the right decision? The following will tell you the method.


Which Size of Rack Mount Enclosure?

The rack mount units are designed for rack mounting in 19-in (48 cm) racks. They are available in rack space options of 1U (two panels, cassettes or modules), 2U (four panels, cassettes or modules), 3U (six panels, cassettes or modules) and 4U (twelve panels, cassettes or modules), etc.(See the following picture.) You should choose the most proper one depending on the space and port requirement of your project.


Slide-out Type or Lid Type?

The rack mount enclosures include two kinds. One is the slide-out type, and the other incorporates a removable lid. The slide out type is more expensive while the lid type is less expensive but requires the user to remove the whole enclosure from the rack to gain internal access. If your budget is sufficient, I will recommend you to use the slide-out type. Then you may get more benefits during installation and maintenance, as they respectively feature a convenient slide-out support tray and a integrated swing-out tray so that you don’t need to remove the whole enclosure from the rack to gain internal access.

Fixed Front Panels or Removable Front Panels?

As we know, fiber optic adapters are the key part of an enclosure to accept the various fiber optic connectors. Thus, to choose a proper front panel option is also important. For general rack mount enclosures, there are mainly two types—one type uses fixed 1U High 19” front panel, and the other type incorporates three, or even up to five removable front panels. The latter is now becoming more popular with users, because a plug & play fiber adapter panel solution assures flexibility and ease of network deployment and MAC (moves, adds, and changes).

Splice or Pre-terminated?

Pigtail splicing and pre-terminated assemblies are the two basic way to do fiber termination. Depending on which method you choose, there are some differences in the rack mount enclosure selection. For pigtail splicing, you may need a rack mount panel with fiber splice tray, which are used for efficient management and storage of the spliced optical fibers. Splice tray is used for efficient management and storage of the spliced fiber optic cables. Fiber optic adapters are installed into the cut outs in the enclosure to accept the various fiber optic connectors. Fiber optic pigtails mate with the adapters and the fusion-spliced tails are stored on the splice tray.

But if you apply pre-terminated assemblies, the inner configuration of the rack mount panel is only the spools that are used to organize the cables. Obviously, the pre-terminated solution will help you save more installed time and labor cost.


In this article, you are advised to select the best fiber rack mount enclosure suitable for your own application from so many types. FS.COM offers a wide range of rack mount enclosures, which is good for interconnect and cross-connect in building your data centers. It’s ideal for the organization and protection of optic backbone terminations. Any service need, please contact us via or call 24/7 Customer Service: 1 (718) 577 1006.

10G SFP or 10GBASE-T SFP for 10GbE Network?

The dramatic growth in data center requires the higher-performance servers, storage and interconnects. From initial 100M, 1G, 10G, to 40G and 100G, high speed Ethernet has never stopped developing. The standard for 10 Gigabit Ethernet (IEEE802.3ae) was ratified in 2002. In 10 Gigabit Ethernet, engineers often find it puzzled to choose a more suitable physical media between fiber and copper. Take a look at the media options for 10GbE Network.

Media Options for 10GbE Network

SFP+ (small form-factor pluggable plus) supports both fiber optic cables and DAC (direct attach cable). It delivers a wide variety of 10GbE Ethernet connectivity options for data center, enterprise wiring closet, and service provider transport applications. But it has the limitations that will prevent the media from moving to every server.

SFP+ cable is designed for 10GbE access layer interconnection in data center. It includes direct attach copper cables and active optical cables. DAC is a lower cost alternative to fiber, but it can support limited transmission distance and it’s not backward-compatible with existing GbE switches. DAC requires the purchase of an adapter card and requires a new top of rack (ToR) switch topology. DAC is more expensive than structured copper channels, and cannot be field terminated.


10GBase-T SFP enables 10GbE connections with unshielded or shielded twisted pair cables over distances up to 100 meters. 10GBase-T technology appears as SPF is not compatible with twisted pair cabling system typically used in data centers. With 10GBase-T SFP, the migration from 1GbE to 10GbE can be easily achieved.

Comparison of 10G SFP and 10GBase-T SFP

Low latency becomes so important since the adoption of private cloud applications increases. It’s beneficial for ensuring fast response time and reducing CPU (center processing units) idle cycles so that improve data center efficiency.

As to 10GBASE-T SFP, the physical connection (PHY) standard uses block encoding to transport data across the cable without errors. The block encoding requires a block of data to be read into the transmitter PHY, a mathematical function run on the data before the encoded data are sent over the link. It happens the same on the receiver side. This standard specifies 2.6 microseconds for the transmit-receive pair, and the block size requires latency to be less than 2 microseconds. While 10G SFP applies simplified electronics without encoding, and common latency is around 300 nanoseconds per link.

You may think that two microseconds are not high. But what if a TOR infrastructure where traffic is passing 4 hops to reach the destination? 10.4-microsecond delay will be caused when using 10GBASE-T SFP. The following table tells details about the latency of SFP+ cable, 10G SFP and 10GABSE-T SFP for different number of links.

Number of Links SFP+ Cable Latency 10G SFP Latency 10GBASE-T SFP Latency
1 0.3 0.1 2.6
2 0.6 0.2 5.2
3 0.9 0.3 7.8
4 1.2 0.4 10.4
5 1.5 0.5 13.0
6 1.8 0.6 15.6

From the above table, it shows that the latency of 10GBASE-T SFP is the highest. As network links grow, the latency turns to be higher. It’s known that the lower latency, the faster the network speed. High latency in the data center infrastructure results in delays in CPU and application works, therefore limiting data center efficiency and increasing operational costs.

Power Consumption

Power consumption is also one of the important factors to be considered in data centers. Engineers are sensitive to power consumption and find a way to seek the lowest possible power consumption technologies. It’s said that every watt of power consumed, typically two additional watts are needed for cooling.

10GBase-T components today require anywhere from 2 to 5 watts per port at each end of the cable depending on the distance of the cable. But 10G SFP requires about 0.7 watt regardless of distance. The figure below compares the power consumption of three media options of 10GbE Ethernet.

10GBASE-T-SFP-power consumption

From this figure, suppose there are 10000 ports in the data center, 10G SFP can greatly save the power. On contrary, 10GBASE-T components consumes the most power. Thus, to save power in the data center, 10G SFP and SFP+ cable should better be selected when deploying thousands of cables in a data center.


From this article, 10G SFP and SFP+ cable solutions are better than 10GBASE-T SFP for 10G data center. But 10GbE is not the ultimate goal. Besides factors mentioned in this article, you should also select a cabling solution which can support not only current needs but also future data center deployments when you design 10GbE network.

Dos & Don’ts of Cable Management

Just imagine how would you feel when you face cable spaghetti? You must say, “oh, it’s very annoying.” Yes, that’s right. Improper cabling can bring disadvantages like heat retention, untimely hardware failure and maintenance headaches. So how to avoid cable spaghetti and keep network cabling in a good organization?


Since cable management is one of the most important factors of data center design, it’s necessary to master some cabling skills. The following content will give you some suggestions for cabling installation.

Don’t Pull Fiber Jumpers too Hard

When installing cables, pulling issue can’t be avoided. Pulling cables too hard can damage them by stressing the core. Stressing the core will affect the signal performance. In extreme cases, it will cause unwinding of the twists in the sheath. Under this situation, you should better buy high quality patch cords from reliable manufacturers or vendors. Good patch cords are able to withstand the stress. Because cheap cables have sub-standard sheathing and narrow diameter cores which can cause signal loss. A smaller core is also more fragile and weak, more likely to bend, leading to an increased rate of cable failure.

Don’t Ignore Labels

Cable labels are very likely to be ignored by engineers. After finishing cable installation, they always think they can remember every cable type, including the network cables, power cables, patch cables, etc. Things doesn’t happen like you wish. Your memory will disappear as time goes on. Thus, you should not overlook labeling which can help you identify cables in a short time and leave messages to other installers to easily decipher what goes back.


Don’t Forget Cable Ties

Cable ties are cheap and useful to get a clean look of your data center. Today there are many categories in different sizes with many colors. Nylon and Velcro ties are the most two common kinds. Velcro ties are better than plastic ties because they are easy and quick to add, remove and reusable. Nylon cable ties can put mush stress on cable bundles and cause pressure points on the cable jacket, changing the cable geometry and thus decreasing performance. What’s more, Velcro ties can be cut easily to any length you need.

Measure the Exact Cable Length You Need

Usually it says the longer, the better. But it’s another case for network cabling. Improper cable length often causes cable mess. Suppose you have bought 50m patch cable. However, you just use 20m. Then how to deal with the spare 30m cable? Just leave it alone? Of course not. So you’re advised to measure the exact cable length you need. Custom cable is the best solution for you to get the right length.

Leave Space for Cables Trays

What if very long cables are left in your network system? You may consider to put the cables into the cable trays. But it’s not a good idea. Cable trays should not be overloaded. Suspended cable trays are mounted to a rack or something. If it’s too heavy, the cable trays may fall off and break other expensive things. Too many cables is not only safety problem, but also leads to poor operational practices because it’s too hard or fear of disturbing cables. What’s worse, the cables at the bottom of cable try may be crushed and degrade signal propagation.

Choose a Proper Cable Manager

Cable manager is an economical and efficient solution to manage high density structured cabling in data centers and telecommunication rooms, which allows the maximum amount of cables to be organized in a minimum amount of space. Choose the best cable manager which suits the most for your application. Simple or complex cable manager, vertical or horizontal, plastic or metal, one must meet your requirements for network cable management improvement.



Cable management is not an easy work. Some engineers may not take cable management seriously or they don’t care much if there is a little mess. But the improper operation can cause lots of problems. To achieve neat cabling, too many things must be taken into consideration. And some useful tools and equipment are also required. Come to find a perfect cabling solution in FS.COM.