Tag Archives: transceivers

What is GBIC Module?

Nowadays, confusion appears when facing so many options on the fiber optic market, so being familiar with fiber optic equipment is helpful to select the one that exactly meets your need. When it comes to transceiver modules, various kinds of modules, like GBIC, SFP, QSFP, CFP and so on, may confuse you. What is GBIC? To help you get a general idea of GBIC module, this article will focus on what is GBIC module, types of GBIC and how to choose from GBIC and SFP.

What is GBIC?

Short for gigabit interface converter, GBIC module is a transceiver which converts electric currents to optical signals and the other way around. It is hot pluggable and connects with fiber patch cable. With SC duplex interface, GBIC module works at the wavelength of 850nm to 1550nm and can transmit signals through the distance of 550m to 80km. It is a cost-effective choice for data centers and office buildings. As the improvement of fiber optic technology, mini GBIC came into being. It is regarded as the advanced GBIC, for it has half the size of GBIC, but supports the same data rate as GBIC. Mini GBIC is called small form factor pluggable (SFP) transceiver, which is a popular optical transceiver module on the market nowadays.

What is GBIC

Types of GBIC

There are many types of GBIC transceiver modules, which differs in transfer protocol, wavelength, cable type, TX power, transmission distance, optical components and receive sensitivity. The following chart will show you the details of them.

Type
1000BASE-SX GBIC
1000BASE-LX GBIC
1000BASE-EX GBIC
1000BASE-EX GBIC
1000BASE-ZX GBIC
Form Type
GBIC
GBIC
GBIC
GBIC
GBIC
Wavelength
850nm
1310nm
1310nm
1550nm
1550nm
Interface
SC duplex
SC duplex
SC duplex
SC duplex
SC duplex
Cable Type
MM
SMF
SMF
SMF
SMF
TX Power
-9.5~3dBm
-9~3dBm
-2~3dBm
-5~0dBm
-5~0dBm
Commercial Temperature Range
0 to 70°C (32 to 158°F)
0 to 70°C (32 to 158°F)
0 to 70°C (32 to 158°F)
0 to 70°C (32 to 158°F)
0 to 70°C (32 to 158°F)
Max Data Rate
1000Mbps
1000Mbps
1000Mbps
1000Mbps
1000Mbps
Max Cable Distance
550m
10km
40km
40km
80km
Optical Components
VCSEL 850nm
DFB 1310nm
DFB 1310nm
DFB 1550nm
DFB 1550nm
DOM Support
YES
YES
YES
YES
YES
Receiver Sensitivity
< -17dBm
< -21dBm
< -24dBm
< -24dBm
< -24dBm

GBIC vs SFP: Which to Choose?

As is shown in the above passage, GBIC and SFP are both used in 1Gbit data transmission. So which to choose? You know that SFP modules have a distinctly smaller size compared with GBIC transceiver modules. Obviously, SFP has the advantage of saving place, so there could be more interfaces to be used on a switch. When to choose which? It depends on the situation and your need. If you already have a line card, then you should choose GBIC or SFP modules according to your empty interfaces type. Besides, if you are planning to buy a new line card for your switch and want to make a decision of using GBIC or SFP modules, then how many interfaces you need to use is the important factor to consider. Generally speaking, SFP line card has a higher port density than GBIC line card for SFP has a smaller form factor than GBIC modules. So if you need 2 fiber interfaces on your switch, 2 port GBIC line card is a good choice. If you need to use over 24 interfaces on your switch, then 48 port SFP line card is more possible to meet your need.

Conclusion

What is GBIC? What are the types of GBIC? And how to choose from GBIC and SFP? This article has given you the answers. With the above information, it’s much more possible for you to choose a GBIC or SFP transceiver wisely. If you need a little more help and advice with any of GBIC or SFP optics, then please do not hesitate to let us know. FS.COM provides various kinds of fiber optic transceivers, including GBIC, 1G SFP, 10G SFP+, 40G QSFP, 100G QSFP28 and so on. For purchasing high-quality transceivers with low cost or for more products’ information, please contact us at sales@fs.com.

Comparison of 10GBASE-T and 10G SFP+ Transceiver

With the growing need of higher capacity network connectivity, 10G network transmission is becoming increasingly popular. 10G SFP+ optical transceiver and 10GBASE-T copper transceiver are the two main options of 10G network. It becomes a challenge to choose the appropriate 10G connectivity for every IT worker. This article will compare 10GBASE-T with 10G SFP+ transceiver from the perspectives of power, latency, cost and interoperability. And try to give you some suggestions to choose between them.

Brief Introduction of 10GBASE-T and 10G SFP+ Transceiver Module

10GBASE-T transceiver module and SFP+ optical transceiver are two of the most widely used 10G network connectivity.

10GBASE-T Copper Transceiver

Applied initially in the data center and the horizontal cabling system, 10GBASE-T transceiver module is a new 10GE PHY using the existing MAC (Media Access Controller). It preserves the 802.3/Ethernet frame format at the MAC Client service interface. 10GBase-T works at 100 meters for Cat6a cable and up to 50 meters for Cat6 cable. It offers flexibility, low cost transmission media, and is backward-compatible with existing 1GbE networks.

10gbase-t
10G SFP+ Optical Transceiver

10G SFP+ transceiver is an enhanced version of the SFP transceiver that supports data rates up to 16 Gbit/s. It supports 8 Gbit/s Fibre Channel, 10 Gigabit Ethernet and Optical Transport Network standard OTU2. SFP+ optical transceiver’s connector is duplex LC, and it operates on LC fiber patch cables. SFP+ transceiver is classified in different types, such as SR, LR, ER and ZR. They need to be used with appropriate fiber patch cable, like SR used with multimode fiber patch cable for short distance transmission, while LR, ER and ZR used with single mode fiber patch cable for relatively long links.

10g sfp+

10GBASE-T vs SFP+ Transceiver

After the brief introduction of the two transceiver modules, we will compare them from following perspectives.

Power and Latency

Recent advancements greatly lowered the power consumption of 10GBASE-T server and switch ports. Early versions of 10GBASE-T switches needed up to 12 Watts per port, switch vendors now offer a range of 1.5 to 4 Watts per port depending on distance. In spite of the reduced power consumption of 10GBASE-T transceiver, 10G SFP+ interface uses less power—typically less than 1 Watt per port.

With simplified electronics, 10G SFP+ transceiver also has lower latency—typically about 0.3 microseconds per link. 10GBASE-T transceiver latency is about 2.6 microseconds per link due to more complex encoding schemes within the equipment.

With lower power consumption and lower latency, 10G SFP+ optical transceiver is well suited for large high-speed data centers.

Cost and Interoperability

10GBASE-T switches has been available since 2008, the shipment of 10GBASE-T transceiver module has been increasing over the past years. This proliferation helps to drive down the cost of 10GBASE-T technology. With 10GBASE-T technology’s wide application, the use of 10G SFP+ transceiver module means additional cost for the servers equipped with 10GBASE-T NIC card. Comparing one of the latest 10G SFP+ and 10GBASE-T switches, the cost of 10GBASE-T transceiver ranges from 20% to 40% less.

10GBASE-T copper transceiver also has the advantage of being interoperable for using the familiar RJ45 connector and providing backwards compatibility with legacy networks. So it can be deployed in existing 1GbE switch infrastructures in data centers, enabling IT to keep costs down while offering an easy migration path to 10GbE. While 10GSFP+ optical transceiver are limited with little or no backwards compatibility.

Make an Informed Decision

When you choose between 10GSFP+ optical transceiver and 10GBASE-T copper transceiver, consider your needs carefully. If lower power consumption and lower latency are significant, 10GSFP+ transceiver might be the better choice for you. If lower cost and better Interoperability are important, 10GBASE-T transceiver might be more suitable for you. FS provides an extensive selection of 10GBASE-T, 10G SFP+ transceiver and transceiver module of other data rate, such as 1G, 25G, 40G, 100G and so on. For more details about FS 10GBASE-T transceiver module and 10G SFP+ optical transceiver, please contact us at sales@fs.com.

QSFP+ in the 40 Gigabit Ethernet Fiber Optic Media Systems

There are two 40 Gigabit fiber optic physical medium dependent (PMD) specifications in the standard, which provide 40 Gb/s Ethernet over multimode fiber (MMF) optic cable and single mode fiber (SMF) optic cable. The 40GBase-SR4 short reach fiber optic system sends four lanes of PCS data over four pairs of multimode cables, for a total of eight fiber strands. The 40GBase-LR long-reach system sends four lanes of PCS data four wavelengths of light, carried over a single pair of fiber optic cables.

The first 40 Gb/s transceivers were based on the C form-factor pluggable (CFP) module, 40G CFP transceiver which is a large module capable of handling up to 24 watts of power requirements were based on this module. The CFP modules is specified by a multiagreement.

CFP module, which can be used to provide either a 40GBase-SR4 or a 40GBase-LR4 transceiver. The module is a 40 GBase-LR4 connection is described. The most popular connector for 40 Gb/s interfaces these days is the QSFP+ module: it takes up much less space on a switch or server interface, making it possible for vendors to provide multiple QSFP+ transceiver module for 40GBase-SR4 is provided with a multifiber push-on (MPO) media connector, carrying multiple pairs of fiber optic cables to support the four lanes of data for the short reach fiber standard. The 40GBase-LR4 long-reach system uses a QSFP+ transceiver equipped with a duplex fiber connector for connecting to the single pair of fiber cables.

Recently Molex Incorporated, the world’s largest plug-in companies introduced the QSFP+ interconnect solution designed for a multimode of markets and applications including switches, router, Host Bus Adapters (HBAs), enterprise data centers. high-performance computing (HPC) and storage. Components of the system include the Electromagnetic Interference (EMI) shielding cage, passive cable assembly, active cable assembly, optical MTP cable assembly, optical QSFP+ loopback, and a 38-circuit SMT iPass host connector.

“The QSFP has evolved to QSFP+ to meet 40Gbps data rates just as SFP progressed from SFP to SFP+ for 40 Gbps rates. The original QSFP MSA now resides as INF-8438 and is no longer an appropriate designation for use, being superseded by SFF-8436 in the SFF Committee,” said Jay Neer, advanced technical market manager, industry standards, Molex Incorporatd.

QSFP+ uses a standard 38-circuit iPass SMT host connector with a proven mating interface that connector with a proven mating interface that enables high durability. The iPass SMT host connector with a proven mating interface that enable high durability. The iPass contact design, also implemented in other standards such as PCIe, SAS, SATA, Ethernet and InfiniBand, provides four balanced differential channels featuring class-leading isolation, and bandwidth, with durability cycling up to 250 cycles. The Molex host connector mounts to the PCB beneath a low-profile metal cage that provide latch points and is engineered to provide appropriate EMI protection for the host system port. Optional light pipes and heat sink thermal solutions can be slipped onto the cage when needed.

The QSFP+ cables assemblies are designed to accommodate stacked and ganged connector configurations in extremely high density requirements. They support 40G Ethernet, InfiniBand, SAS and SONET/SDH standards with different data rate options.

The optical QSFP+ MTP cable assemblies and loopbacks meet the QSFP+ interface specification. Cables are constructed with 12-fiber 3.00mm round cable for data center interconnect cable assembly applications.

The round cable provides much improved cable management over the traditional flat ribbon cable. A robust 4.50mm round optical cable ensure cable integrity and improved cable routing for installations that require connections greater than 25m apart.

QSFP+ breakout cable assemblies are available for SFP+ or patch panel installations. Loopbacks feature a compact housing compatible with module spacing and loop optical transmit ports to receive ports for testing, burn -in, and field troubleshoot.

The related products what mentioned above all can be offered from FS.COM, at the same time, I need to tell you good news that some optical fiber products are working with 30% of the price discount now. Welcome to visit our online store.