Category Archives: Cables Management

Fibre Optic Patch Panel Best Practices

The fibre optic patch panel, one type of the patch panels, is getting more popular with many expertise and customers getting to use it. It rides the waves of the optic product and meets appropriately our demands. As the fibre is fed through a coupler, the fibre patch panels are a lot easier to install and no hardwiring is needed.

What Is a Fibre Optic Patch Panel?

Fibre optic patch panel, also known as fibre distribution panel, serves as a convenient place to terminate all the fibre optic cable running from different rooms into the wiring closet and provides connection access to the cable’s individual fibres. Fibre patch panels are termination units, which are designed with a secure, organised chamber for housing connectors and splice units. Fibre patch panels are available in rack mounted or wall mounted and are usually placed close to terminating equipment (within patch cable reach). Both types can house, organise, manage and protect fibre optic cable, splices and connectors. Rack mount panels also come in flat and angled versions.

fiber patch panel

Why We Use Fibre Optic Patch Panel to Manage Cables?

Of course, if we skip it and just connect all cables directly into the hub, then we will miss the following advantages:

You can label the patch panel so you know which room the cable run goes to. Putting the labels on the cables is tougher to read than labels on a patch panel and there is also a risk of falling off. Having patch panel will become very handy and achieve neat cabling.

Best Practices in the Installation of a Fibre Patch Panel

In this part, we will use a 12 port rack mount fibre optic patch panel as an example. And the main body can be divided into 3 parts, namely cable preparation, splicing, and patch cable installation.

First, prepare fibre optic cable or blown tube as required and secure the network cable to the rear of the panel by using cable ties. For the easy operation, we need to unscrew and remove the splice tray. In addition, we need to cut the cable jacket off to punch down but avoid excess to limit crosstalk or damage. Then, splice input fibres onto the pigtails or field terminate connectors as applicable. Finally, put the cables in the panel form its back. Remove the protective covers of both the adapter and the connector and clean the connectors and place them in the adapters.

Conclusion

In a few words, a fibre optic patch panel gives you a very good cabling organisation. The better cable management can spare you a lot of energy and time in case that you do trivial things. Though many people view it as a waste, I believe that everything has its meaning to exist in the world. What matters most is whether you can take advantage of it and apply it to the situation where it is actually needed.

48 Port Patch Panel—Best Choice

As we have learned before, port density is a critical concern when choosing a patch panel. Usually the patch panel with more ports enables more connectivity. Common patch panels are always designed in 12 or 24-port configurations. Does it mean that the more ports one patch panel has, the better it will be? However, as far as I am concerned, it may not always be versatile because more ports means more money. Sometimes you just want a patch panel for household use, then a 128-port patch panel is a waste and you need to take care of the ports idled. If you haven’t determined which system you will apply it to, a 48 port patch panel may be a good choice.

Benefits of 48 port patch panel

In fact, a 48 port fibre or copper patch panel is totally enough for home and office use. And the fibre patch panel also has two types as singlemode and multi-mode one. And the advantage of using a 48 port patch panel is that it allows manual monitoring, testing, switching, routing, and other maintenance to be handled quickly because the cables in the front that connect to the more permanent cables in the back are configured and made so that changes can be made quickly and easily when needed.

48 Port Copper Patch Panel

With the copper patch panel, each pair of wires has an independent port. So copper patch panels offer simple and efficient interconnection in Ethernet applications. And when the front copper touches the copper in the back, a little bit of the signal is lost but not enough to worry about. Take the HD-48P-E1U 48-Port 1U Rack-Mount UTP Blank Keystone/Multimedia Patch Panel as an example, it manages and organizes the cabling in your network. The rear cable manager keeps cables neat, tidy and efficiently organized on the back of the panel. Ports are clearly numbered to help you identify connections.

Both the copper and fibre patch panels can provide you with flexibility and scalability, because the network can grow and change on-demand, without the costly, labor-intensive hassle of replacing channels end-to-end. For more information about fibre and copper patch panel, you can refer to this Which One to Choose? Fibre or Copper Patch Panel.

Singlemode and Multi-mode Fibre Patch Panel

The fibre patch panel, 96 Fibres, 48 Ports LC Duplex 9/125 Singlemode Fibre Adapters, 1U High 19″ Fibre Patch Panel from FS.COM, offers the highest port concentration and bandwidth over high performance structured cabling to all network areas, whether in the data centre or in the high performance LAN. By managing varying port densities and speeds in a single high-density patch panel, you save valuable rack space, helping to lower data centre costs.

singlemode patch panel

And the 96 Fibres, 48 Ports LC OM3/OM4 Multimode Adapters, 1U High 19″ Fibre Patch Panel can be used as a junction for 50/125 Multi-Mode Fibre with LC connectors. The panel fits a standard 19″ rack, and the LC connectors are standard sized too. Its high-density and easy maintenance allow a low initial investment cost. With it, you can only buy the devices you need now, while leaving room for future expansion.

multi mode patch panel

Conclusion

In a word, a 48 port patch panel makes it easy to organize the fibres in an business or home network.With a 48 port fibre patch panel, you can achieve a better cable management. Of course, one could skip the patch panel and just connect all connectors directly into the hub, however, you need to label the patch panel so you know which room the cable run goes to. But it is tougher to read than labels on a patch panel and also there is risk of having the cable labels fall off. All I want to inform you is that a 48 port patch panel is not expensive in FS.COM. Please feel free to contact us.

How to Punch Down Cat6 into Patch Panel

When it comes to punching down Ethernet patch panel, unlike feed through patch panel which provides patching without punching down the wires to the ports, punch down patch panel is a kind of network patch panel that should punch down Ethernet cable on the rear side. On the front plate, RJ45 ports, marked with number for easy identification, can be directly connect Ethernet copper cable. For example, simply punch down the twisted pair cabling in the back of the 24 port patch panel and you are ready to plug in RJ45 patch leads in the front.

punch down patch panel

Punch down types are available in Cat6 or Cat5e patch panel. Category 6 cables have stricter standards for reducing system noise and avoid crosstalk, much better than Cat5 or Cat3, which means less network interference and better performance. Here comes the question: how to punch down Cat6 into patch panel.

After experiencing myself and watching countless videos performed by others, I summary the procedure into the brief seven steps and hope it can help you when fixing the devices.

  • First, determine the length of cables you need. Do not overlook this step as it will help save materials as much as possible, though many think the cable is not expensive.
  • Second, peel the outside protective jacket about 3-6 inches from the cable end with cable stripping tools.
  • Third, after removing the cable jacket, you should cut off the plastic spine surrounded by pairs as close to the cables end as possible and then separate the wire pairs. Try to straighten the ends so that you can do the termination easily. Pull on the spine and fold the pairs back. Then cut the spine .
  • Fourth, place the cable wires into the slot on the patch panel. Make sure when you put them in the patch panel, you put them firmly so they don’t move before you punching down. Choose a port on the patch panel to begin terminating. Usually we start with the 1st port. Then insert each wire into its own slot. Don’t leave wires exposed too much or twisted to avoid signal loss.
  • Fifth, terminate the wires. Once you have all your wires in place, you have to take a punch down tool and punch down the wires into the patch panel. Push down the tool and cut the end of wire off. It is also OK to twist it off. After punching down the wire, your panel is looking nice and clean without surplus wires.
  • Sixth, inspect the wire. Once you’ve finished terminating the wires, use a cable tester to check if all the wires are correctly terminated.
  • Seventh, once you are done. Use a clip to prevent wires slipping out by accident.

When the punching down process is completed, you can place the patch panel into the racks with screws. However, any step being missed may result in more or less damage. Be careful and you can make a step list by yourself and mark the steps you have finished to avoid mistakes. Punch down patch panels, Cat6 cables as well as accessories appeared in the process are available in FS.COM. If you still have some difficulties after reading this article, the expertise on our website can help you install our products step by step by remote instruction online.

Wall Mount VS Rack Mount Patch Panel

Patch panels are termination units, which are designed to provide a secure, organised chamber for housing connectors and splice units. Its main function is to terminate the fibre optic cable and provide connection access to the cable’s individual fibres. Patch panels can be categorised into different types based on a few different criteria. Last time, we have shed light on the copper and fibre patch panel and now let’s learn a different pair of it, namely wall mount patch panel and rack mount patch panel.

Wall Mount Patch Panel

As the name suggests, wall mount patch panel is a patch panel fixed on the wall.The wall mount patch panels are designed to provide the essential interface between multiple fibre cables and optical equipment installed on the customer’s premises. The units offer networking and fibre distribution from the vault or wiring closet to the user’s terminal equipment.

This kind of patch panel consists of two separate compartments. As shown below, the left side is used for accommodating outside plant cables entering the building, pigtails and pigtail splices. Whereas, the right side is designed for internal cable assembly networking. And both sides have a door secured with a quarter turn latch.

wall mount patch panel

Rack Mount Patch Panel

The rack mount patch panel usually holds the fibres horizontally and looks like a drawer. Rack mount panel is designed in 1U, 2U, 4U sizes and can hold up to 288 or even more fibres. They can be mounted onto 19″ and 23″ standard relay racks. The rack mount enclosures include two kinds. One is the slide-out variety and the other incorporates a removable lid. As for the latter one, the tray can be pulled out and lowered to 10 degree working angle or even further 45 degree working angle to provide ease of access for maintenance or installation work.

rack mount patch panel

Wall Mount VS Rack Mount Patch Panel

  • Installation

When installing wall mount patch panels, users need to leave at least 51mm additional space on each side to allow opening and removing the doors. Although it can be easily mounted to the wall by using the internal mounting holes, four screws are required when it is attached to a plywood wall, expansion inserts with wood screw for concrete walls and “molly bolts” for sheet rock. However, the installation of a rack patch panel just needs four screws without drilling the wall.

  • Space Occupation

Thinking from another perspective, the advantage of wall mount patch panels is that they allow you to optimise your work space by keeping equipment off floors and desks,which is superior to the rack mount patch panel.

  • Application

Both panels can be applied to Indore Premise Networks, Central offices (FTTx), Telecommunication Networks, Security Surveillance Applications, Process Automation & Control, Systems and Power Systems & Controls, while the rack mount patch panel has an advantage over the wall mount patch panel in that it can be applied to Data Centres.

Conclusion

To sum up, patch panels are available in rack mounted and wall mounted and are usually placed near terminating equipment (within patch cable reach). Both types can provide an easy cable management in that the panel ports can be labeled according to location, desktop number,etc. to help identify which cable from which location is getting terminated on which port on the patch panel, and changes can be made at the patch panel. The world-wide renown FS.COM can provide you the best quality rack mount and wall mount patch panel. Buyers are welcome to contact us.

Fiber Optic Components for Building 10G Data Centers

10 Gigabit Ethernet is a telecommunication technology that can support the network speed up to 10 billion bits per second. It’s also known as 10GbE. As 10GbE greatly increases bandwidth, many companies start to upgrade the data centers to meet their growing needs. How to build a 10G data center? What kind of equipment will be used except the switch? This article will recommend you some basic 10G solutions.

10G SFP+ (small form-factor pluggable plus) modules are hot swappable transceivers that plug into SFP+ slots on switches and support 10G data center. With small form factor, SFP+ transceivers can ensure low power disruption and high port density. Since it’s hot pluggable, the transceiver modules can be added or removed without interrupting the whole network. And SFP+ modules deliver data transmission speed of up to 10Gbit/s, which is 10 times faster than Gigabit Ethernet.

10g-sfp-module

Currently, a wide variety of SFP+ modules can be purchased in the market. For the long distance transmission, modules include SFP-10GBASE-LR, SFP-10GBASE-ER, SFP-10GBASE-ZR, CWDM SFP+ and DWDM SFP+. For the short distance transmission, there are modules like SFP 10GBASE-SR, SFP-10GBASE-LRM. Brands are also versatile such as Cisco, Juniper, Arista, Brocade, etc. To get modules with lower costs, you can pick third-party transceivers which are compatible with these original brands.

Patch cables contain both fiber and copper types. Fiber patch cords, as one of the data transmission media, enjoy great popularity because they have large transmission capacity, strong anti-electromagnetic interference, high security and fast speed. LC fiber patch cord is one of the most common cables for 10G data center, covering single-mode and multimode categories respectively for data transmission over long distance and short distance. To increase panel density, flexible HD LC push-pull tab fiber patch cable is designed. With its unique design, this patch cable allows the connector to be disengaged easily from densely loaded panels without the need for special tools and give users easy accessibility in narrow areas for data center deployment applications. Another special LC patch cord is uniboot patch cord. It utilizes a special “round duplex” cable that allows duplex transmission within a single cable. It’s good for saving cable management space comparing to standard patch cords.

lc-patch-cable

10G SFP+ Direct Attach Cable Assemblies

10G SFP+ direct attach cable (DAC ) is a cost-effective solution for 10G data center. It’s a low-power alternative to optical SFP+ system. The 10G SFP+ cables provide low-cost and reliable 10G speed with either copper cables over distances up to 10 m or active optical cables reaching distances up to 100 m. Because there is no need for spending on fiber optic transceivers and cables. This kind of cables contain 10G SFP+ copper cables, both passive and active and active optical cable (AOC). Active copper cable and AOC are designed for long distance connection, while passive copper cable is for short distance, such as the interconnection of top-of-rack switches with application servers and storage devices in a rack.

10g-sfp-cables

Fiber Enclosure

Fiber enclosure is an equipment you must have in data centers. This component is used to provide a flexible and modular system for managing fiber terminations, connections, and patching in high density data center application to maximize rack space utilization and minimize floor space. Fiber enclosure can be divided into different configurations like rack mount (available in 1U, 2U, 3U, 4U), wall mount, indoor or outdoor. The rack mount enclosure come into three flavors. One is the slide-out type and the other two are removable type and swing out type. Fiberstore introduces high density fiber enclosures with 48 ports, 96 ports and even 288 ports loaded LC FAPs (fiber adapter panels) in 1RU or 4RU rack mount for 10G solutions. Or if you already have the unloaded fiber enclosures, you just need to buy fiber adapter panels.

288-pors-4u-patch-panel-enclosure

Conclusion

To build a 10G data center, you have to prepare the components, for instance, 10G SFP+ modules, LC patch cables, 10G SFP+ cables, fiber enclosures, etc. You may also need other instruments for testing and cable organization. And all those equipment can be got from FS.COM with higher quality but fewer costs. For more information, you can contact us via sales@fs.com.

Secrets of Choosing Fibre Rack Mount Enclosure

Fibre rack mount enclosures can provide a high-density solution for inter-connects or cross-connects between backbone horizontal cable and active equipment. Enclosures allow for easy field termination of connectors or installation of pre-terminated solutions, and are ideal for high-density fibre applications in data centres, equipment rooms, and central offices. Fibre rack mount enclosures come in different configurations. You may find fibre enclosures in the market with different sizes, slide-out or lid type, fixed front panel or removable front panel, splice tray or preterminated. Among so many types, you have to choose one that suits your application the most. So how to make the right decision? The following will tell you the method.

Which Size of Rack Mount Enclosure?

The rack mount units are designed for rack mounting in 19-in (48 cm) racks. They are available in rack space options of 1U (two panels, cassettes or modules), 2U (four panels, cassettes or modules), 3U (six panels, cassettes or modules) and 4U (twelve panels, cassettes or modules), etc.(See the following picture.) You should choose the most proper one depending on the space and port requirement of your project.

rack-sizes-rack-units

Slide-out Type or Lid Type?

The rack mount enclosures include two kinds. One is the slide-out type, and the other incorporates a removable lid. The slide out type is more expensive while the lid type is less expensive but requires the user to remove the whole enclosure from the rack to gain internal access. If your budget is sufficient, I will recommend you to use the slide-out type. Then you may get more benefits during installation and maintenance, as they respectively feature a convenient slide-out support tray and a integrated swing-out tray so that you don’t need to remove the whole enclosure from the rack to gain internal access.

Fixed Front Panels or Removable Front Panels?

As we know, fibre optic adapters are the key part of an enclosure to accept the various fibre optic connectors. Thus, to choose a proper front panel option is also important. For general rack mount enclosures, there are mainly two types—one type uses fixed 1U High 19” front panel, and the other type incorporates three, or even up to five removable front panels. The latter is now becoming more popular with users, because a plug & play fibre adapter panel solution assures flexibility and ease of network deployment and MAC (moves, adds, and changes).

Splice or Pre-terminated?

Pigtail splicing and pre-terminated assemblies are the two basic way to do fibre termination. Depending on which method you choose, there are some differences in the rack mount enclosure selection. For pigtail splicing, you may need a rack mount panel with fibre splice tray, which are used for efficient management and storage of the spliced optical fibres. Splice tray is used for efficient management and storage of the spliced fibre optic cables. Fibre optic adapters are installed into the cut outs in the enclosure to accept the various fibre optic connectors. Fibre optic pigtails mate with the adapters and the fusion-spliced tails are stored on the splice tray.

But if you apply pre-terminated assemblies, the inner configuration of the rack mount panel is only the spools that are used to organize the cables. Obviously, the pre-terminated solution will help you save more installed time and labor cost.

Conclusion

In this article, you are advised to select the best fibre rack mount enclosure suitable for your own application from so many types. FS.COM offers a wide range of rack mount enclosures, which is good for interconnect and cross-connect in building your data centres. It’s ideal for the organization and protection of optic backbone terminations. Any service need, please contact us via sales@fs.com or call 24/7 Customer Service: 1 (718) 577 1006.

Dos & Don’ts of Cable Management

Just imagine how would you feel when you face cable spaghetti? You must say, “oh, it’s very annoying.” Yes, that’s right. Improper cable management can bring disadvantages like heat retention, untimely hardware failure, and maintenance headaches. So how to avoid cable spaghetti and keep network cabling in a good organization?

cable management

Since cable management is one of the most important factors of data centre design, it’s necessary to master some cabling skills. The following content will give you some suggestions for cabling installation.

Don’t Pull Fibre Jumpers too Hard

When installing cables, pulling issue can’t be avoided. Pulling cables too hard can damage them by stressing the core. Stressing the core will affect the signal performance. In extreme cases, it will cause unwinding of the twists in the sheath. Under this situation, you should better buy high-quality patch cords from reliable manufacturers or vendors. Good optical fibre is able to withstand the stress. Because cheap cables have sub-standard sheathing and narrow diameter cores which can cause signal loss. A smaller core is also more fragile and weak, more likely to bend, leading to an increased rate of cable failure.

Don’t Ignore Labels

Cable labels are very likely to be ignored by engineers. After finishing cable installation, they always think they can remember every cable type, including the network cables, power cables, patch cables, etc. Things don’t happen like you wish. Your memory will disappear as time goes on. Thus, you should not overlook labeling which can help you identify cables in a short time and leave messages to other installers to easily decipher what goes back.

cable label

Don’t Forget Cable Ties

Cable ties are cheap and useful to get a clean look of your data centre. Today there are many categories in different sizes with many colours. Nylon and Velcro ties are the most two common kinds. Velcro ties are better than plastic ties because they are easy and quick to add, remove and reusable. Nylon cable ties can put much stress on cable bundles and cause pressure points on the cable jacket, changing the cable geometry and thus decreasing performance. What’s more, Velcro ties can be cut easily to any length you need.

Measure the Exact Cable Length You Need

Usually, it says the longer, the better. But it’s another case for network cabling. Improper cable length often causes cable mess. Suppose you have bought 50m patch cable. However, you just use 20m. Then how to deal with the spare 30m cable? Just leave it alone? Of course not. So you’re advised to measure the exact cable length you need. Custom cable is the best solution for you to get the right length.

Leave Space for Cables Trays

What if very long cables are left in your network system? You may consider putting the cables into the cable trays. But it’s not a good idea. Cable trays should not be overloaded. Suspended cable trays are mounted to a rack or something. If it’s too heavy, the cable trays may fall off and break other expensive things. Too many cables are not only safety problem, but also leads to poor operational practices because it’s too hard or fear of disturbing cables. What’s worse, the cables at the bottom of cable try may be crushed and degrade signal propagation.

Choose a Proper Cable Manager

Cable manager is an economical and efficient solution to manage high density structured cabling in data centres and telecommunication rooms, which allows the maximum amount of cables to be organized in a minimum amount of space. Choose the best cable manager which suits the most for your application. Simple or complex cable manager, vertical or horizontal, plastic or metal, one must meet your requirements for network cable management improvement.

cable manager

Conclusion

Cable management is not an easy work. Some engineers may not take cable management seriously or they don’t care much if there is a little mess. But the improper operation can cause lots of problems. To achieve neat cabling, too many things must be taken into consideration. And some useful tools and equipment are also required. Come to find a perfect cabling solution in FS.COM.

Related article: Fiber Patch Panel for High Density Data Center

Fibre Patch Panel for High Density Data Centre

Fibre optic cable has been increasingly applied to meet the need of high speed network. In data centres, the cabling infrastructure turns to be more complicated. Under that situation, keeping good cable management is necessary since messy cabling will cause fibre optic loss and not easy for troubleshooting. Then fibre patch panels can serve as the tools for cabling systems.

Fiber-Patch-Panel

A fibre patch panel is also called fibre distribution panel. It’s used to terminate the fibre optic cable and provide connection to individual spliced fibres. Besides, fibre patch panels can create a secure environment for exposed fibres, housing connectors and splice unites.

Fibre Patch Panel Types

Fibre patch panels can be divided into two types. Both types can house, organise, manage and protect fibre optic cable, splices and connectors.

One is rack mount enclosure. Usually the rack mount enclosure holds the fibres horizontally and looks like a drawer. Rack mount enclosure is designed in 1U, 2U, 4U sizes and can hold up to 288 or even more fibres. The rack mount enclosures include two kinds. One is the slide-out variety and the other incorporates a removable lid. The sliding design of panels gives engineer easy access to the fibres inside but it’s more expensive. The lid type is less expensive but requires the user to remove the whole enclosure from the rack to gain internal access.

The other is wall mount enclosure. While wall mount enclosure is designed for enclosed wall mounting of adapter panels or splice trays. They are fabricated from steel sheets and finished with a light textured black powder coat. These panels can be easily mounted to any wall using the internal mounting holes. They can protect fibres from dust or debris contamination and organise the cables.

 wall-mount

Fibre Patch Panel Structure

A typical fibre patch panel contains four parts: enclosed chamber (rack mount or wall mount), adapter panels, connector adapters (providing low optical loss connection through mating appropriate connectors) and splice tray (organizing and securing splice modules). Adapters on a fibre patch panel are available in different shapes, such as LC, SC, MTP, etc. Most times, all adapters are of the same type in a panel. But sometimes a panel with different types of adapters is needed when more than one type of fibre optic connectors used in a network.

Fibre patch panel has two compartments. One contains the bulkhead receptacles or adapters, and the other is used for splice tray and excess fibre storage. Patch cable management trays are optional for some patch panels and make possible the neat storage of excessive patch cable lengths.

Fibre Patch Panel Ports

Fibre patch panel ports provide a place for data to enter and exit the panel. The number of these ports vary from 12, 24, 48, 64, 72, 96 to 288 and even more. Actually there is no limit to the number of ports on a patch panel. As long as there is enough room, you can fill the enclosure without interfering with the integrity.

FS.COM offers a 288 fibres 4RU rack mount fibre optic enclosure, loaded with 12 slots duplex fibre adapter panels. This high density patch panel provides a flexible and modular systems for managing fibre terminations, connections, and patching in all applications. With its high fibre densities and port counts, it maximises rack space utilization and minimises floor space. This enclosure makes it easy for network deployment, moves, adds, and changes. It’s a perfect solution for engineers to do the fibre termination and distribution.

288-fiber enclosure

Fibre Termination in the Patch Panel

In a patch panel, pigtail or field termination can be used for the connection. If it uses the pigtail approach, a splice tray is needed in the patch panel. This method provide the best quality connection and is usually the quickest. The second method uses fibre optic connector for field termination. A fibre optic connector is directly installed onto the individual fibres. This method usually takes longer time than pigtail but doesn’t need a splice tray in the patch panel. However, the connection quality may not be as good as pre-terminated pigtails.

Summary

Fibre patch panels are very useful especially in the high density data centre. They feature with the benefits of easy fibre installation, maximum flexibility and manageability. Although patch panels are attractive, it’s the best only when it fits your application. No matter rack mount or wall mount type, loaded or unloaded, you should better choose the most suitable one based on your own situation.

Related article: Dos & Don’ts of Cable Management

LC Connector for High Density Data Centres

SC duplex connector was popular a few years ago. But as time goes on, smaller and more compact cabling components are required since the packing density of optical devices keeps increasing, namely high density. The smaller the shape, the more popular the component, just like development history of cellphone. Driven by this requirement, optic manufacturers start to produce mini components. The most widely known is the LC connector, a small form factor connector. The following article will introduce various types of LC connectors in details.

LC small form factor connector has just 1.25mm ferrule, half the size of the standard connector (compared with SC connector). Because of the high density design, LC connector solution can reduce the space needed on racks, enclosures and panels by approximately 50% throughout the network. So LC connector is a good solution for high density data centres. The LC connector uses RJ45 push-pull style plug that offers a reassuring, audible click when engaged. It makes moves, adds and changes easy and saves costs for you. Besides, the protective cap completely covers the connector end, which prevents ferrule end face from contamination and impact and enhances the network performance.

lc-lc-duplex

LC Uniboot

LC uniboot connector includes a finger latch release that there is no need for tools when making the polarity change. Some LC uniboot connectors are color-coded and labeled “A” and “B” to provide visual references when making a polarity change. The uniboot design is compatible with transceivers using the LC interface. The LC uniboot patch cords use special round cable that allows duplex transmission within a single cable, and it greatly reduces cable congestion in racks and cabinets comparing to standard patch cords. LC uniboot patch cord is perfect for high density applications. FS.COM LC uniboot patch cords are available in SM, OM3 or OM4 multimode fibre types to meet a wide variety of configurations and requirements.

uniboot-lc

Push-Pull LC Connector

If you have tried to release LC connectors in patch panels with high density, you must know how difficult it is. As to high density panel, thumbs and forefingers can not easily access to pull the connector. So some manufacturers start to offer a special LC connector which can be easily dealt with. And that’s push-pull tab LC connector.

Push-Pull-Tab-Patch-Cable

LC push-pull connectors offer the easiest solution for installation and removal. The special design is available in a compact model, ideal for minimizing oversized panels. With this kind of connector, you don’t need to leave additional space at the top or bottom to allow room for engaging the latch. The structure of the LC push-pull compact is designed as the latch can be slid back, instead of being pushed down, to facilitate smooth removal. It’s simple for installation and removal. Push-Pull LC patch cable allows users accessibility in tight areas when deploying LC patch fields in high density data centres. Push-Pull LC fibre patch cords are available in OM4, OM3 or single-mode fibre types to meet the demands of Gigabit Ethernet, 10 Gigabit Ethernet and high speed Fibre Channel.

Secure Keyed LC Connector

Secure keyed LC connectors are designed for network security and stability. 12 colors are available in FS.COM, including red, magenta, pink, yellow, orange, turquoise, brown, olive, etc. Connections only work when the color matches. The color-coded keying options provide design flexibility and facilitate network administration. It reduces risks and increases the security of network from incorrect patching of circuits. Secure keyed LC connectors feature low insertion loss, excellent durability.

lc-keyed

Conclusion

This article tells different types LC connectors, including common LC connector, LC uniboot, push-pull LC and secure keyed LC connector. The design of those LC connectors keeps improving to adapt to high density data centrers. Nowadays, the trend of network is high speed and high density. So effective cable management is significantly important. And the key concern is how to manage more cables within less space. Thus, among so many kinds of interfaces, LC connector is the most frequently used and the most effective solution for space saving in data centres.

Suggestions for Data Centre Design

The demands on data centres and networks are growing very fast. To meet communication needs, more and more devices are connected to the data centre network links. It brings difficulties in data centre management. The infrastructure design should guarantee the reliable network performance. But how to achieve the best performance? Four suggestions are recommended for you when designing a data centre.

Maximizing Network Performance

As today, many companies adopt high density configurations and virtualization to increase the capacity of existing IT equipment. To ensure the network performance, a robust data centre infrastructure is necessary. And three parts of the infrastructure must be considered: the structured cabling, racks and cabinets, and the cable management.

data-center

Figure 1. Structured data centre

First, the structured cabling performance has a close relationship to the connectivity and cable components. If the components fail to deliver good cabling system, great optical loss will be caused. To improve the channel performance, insertion loss should be minimized especially in 40G and 100G data centre. Second, choose right rack or cabinet to accommodate new equipment with different size and weight requirements since active equipment in the infrastructure turn to be broken easily and will be replaced in five years or less. Third, manage the airflow and maintain good cooling system. Because the rising temperature of the data centre has an influence on network performance. The last component of the infrastructure is cable management. A well-designed cable management should meet the standards of spare space, high reliability and scalability. The infrastructure is designed for both copper and fibre, maintaining proper bend radius for both copper and fibre, protecting cable from damage, and creating crosstalk and return loss.

Saving Time

Although data centre grows in size and complexity, it often requires faster deployment. It must adapt to the rapid changing business requirements. As it says, time is money. Selecting an infrastructure that optimize time, result in faster deployments can save lots of costs.

In order to save time in deployment, installation and future moves, adds, and changes, a suitable modular solution based on the rack or cabinet should be applied. The modular solution is also good for effective airflow management and cooling, which can save time because it can easily support high density when needed. Pre-terminated copper and fibre cabling solutions can also save time during installation and future cabling moves. Pre-terminated fibre systems, for example, MPO to MPO trunk cables or MPO to LC harness cables, can facilitate the migration to higher speeds.

Optimizing Spare Space

To adapt to high speed demands, data centre infrastructure turns to be more complex. Now space is a premium in the data centre as port densities continue to increase. Considering the cost, infrastructure should be optimized for greater flexibility and scalability. High density connectivity options including high density patch panel, MTP cassette, etc. are the solutions to optimize space while supporting large port densities. For instance, LC connectors (2 fibre) have been replaced by MPO (typically 12 or 24 fibres) connectors for the migration from 10 GbE to 40 GbE and 100 GbE.

MTP-solution

Figure 2. MTP components for saving space

To optimize space in the data centre, the following factors are needed to be considered:

  • Choose the rack or cabinet as your basic building block
  • Select racks and cabinets with higher weight limits, sufficient depth and heights that support growing vertically
  • Select cable management that can support existing and future cable density, fluent airflow, and is designed to support both copper and fibre
  • Select connectivity that supports high density and mixed media
  • Use cable with small outside diameter
  • Consider patching outside the rack and cabinet to save space for equipment
  • Select a rack or cabinet solution that easily integrates with overhead pathways
Finding a Cooperator With Rich Experience

During the design phase, the data centre design must provide guaranteed performance while providing flexibility and scalability for future needs. During the installation phase, the solution must be easy to install, quick to deploy and easy to manage. So it’s important to find a qualified contractor who has a history of quality installations. You also need to choose a good manufacturer providing cost-effective components covering cooling, power, connectivity, cabling, racks and cabinets, cable management, and pathways, like Fiberstore (FS.COM). And the manufacturer should also have expertise of extending the equipment life, reducing cost and solving other problems in the data centre.

Summary

Data centre design is not an easy job as the cabling infrastructure becomes more complex for meeting the growing high data rates demands. To maximize the efficiency of a data centre, too many elements should be taken into consideration. The above content gives suggestions for data centre design to guarantee performance, save time, optimize space, and find an experienced cooperator. Hope this article is useful to your data centre design.