Tag Archives: transceiver module

400G ZR & ZR+ – New Generation of Solutions for Longer-reach Optical Communications

400G

400G ZR and ZR+ coherent pluggable optics have become new solutions for high-density networks with data rates from 100G to 400G featuring low power and small space. Let’s see how the latest generation of 400G ZR and 400G ZR+ optics extends the economic benefits to meet the requirements of network operators, maximizes fiber utilization, and reduces the cost of data transport.

400G ZR & ZR+: Definitions

What Is 400G ZR?

400G ZR coherent optical modules are compliant with the OIF-400ZR standard, ensuring industry-wide interoperability. They provide 400Gbps of optical bandwidth over a single optical wavelength using DWDM (dense wavelength division multiplexing) and higher-order modulation such as 16 QAM. Implemented predominantly in the QSFP-DD form factor, 400G ZR will serve the specific requirement for massively parallel data center interconnect of 400GbE with distances of 80-120km. To learn more about 400G transceivers: How Many 400G Transceiver Types Are in the Market?

Overview of 400G ZR+

ZR+ is a range of coherent pluggable solutions with line capacities up to 400Gbps and reaches well beyond 80km supporting various application requirements. The specific operational and performance requirements of different applications will determine what types of 400G ZR+ coherent plugs will be used in networks. Some applications will take advantage of interoperable, multi-vendor ecosystems defined by standards body or MSA specifications and others will rely on the maximum performance achievable in the constraints of a pluggable module package. Four categories of 400G ZR+ applications will be explained in the following part.

400G ZR & ZR+: Applications

400G ZR – Application Scenario

The arrival of 400G ZR modules has ushered in a new era of DWDM technology marked by open, standards based, and pluggable DWDM optics, enabling true IP-over-DWDM. 400G ZR is often applied for point-to-point DCI (up to 80km), making the task of interconnecting data centers as simple as connecting switches inside a data center (as shown below).

Figure 1: 400G ZR Applied in Single-span DCI

Four Primary Deployment Applications for 400G ZR+

Extended-reach P2P Packet

One definition of ZR+ is a straightforward extension of 400G ZR transcoded mappings of Ethernet with a higher performance FEC to support longer reaches. In this case, 400G ZR+ modules are narrowly defined as supporting a single-carrier 400Gbps optical line rate and transporting 400GbE, 2x 200GbE or 4x 100GbE client signals for point-to-point reaches (up to around 500km). This solution is specifically dedicated to packet transport applications and destined for router platforms.

Multi-span Metro OTN

Another definition of ZR+ is the inclusion of support for OTN, such as client mapping and multiplexing into FlexO interfaces. This coherent pluggable solution is intended to support the additional requirements of OTN networks, carry both Ethernet and OTN clients, and address transport in multi-span ROADM networks. This category of 400G ZR+ is required where demarcation is important to operators, and is destined primarily for multi-span metro ROADM networks.

Figure 2: 400G ZR+ Applied in Multi-span Metro OTN

Multi-span Metro Packet

The third definition of ZR+ is support for extended reach Ethernet or packet transcoded solution that is further optimized for critical performance such as latency. This 400G ZR+ coherent pluggable with high performance FEC and sophisticated coding algorithms supports the longest reach over 1000km multi-span metro packet transport.

Figure 3: 400G ZR+ Applied in Multi-span Metro Packet

Multi-span Metro Regional OTN

The fourth definition of ZR+ supports both Ethernet and OTN clients. This coherent pluggable also leverages high performance FEC and PCS, along with tunable optical filters and amplifiers for maximum reach. It supports a rich feature set of OTN network functions for deployment over both fixed and flex-grid line systems. This category of 400G ZR+ provides solutions with higher performance to address a much wider range of metro/regional packet networking requirements.

400G ZR & ZR+: What Makes Them Suitable for Longer-reach Transmission in Data Center?

Coherent Technology Adopted by 400G ZR & ZR+

Coherent technology uses the three degrees of freedom (amplitude, phase and polarization of light) to focus more data on the wave that is being transmitted. In this way, coherent optics can transport more data over a single fiber for greater distances using higher order modulation techniques, which results in better spectral efficiency. 400G ZR and ZR+ is a leap forward in the application of coherent technology. With higher-order modulation and DWDM unlocking high bandwidth, 400G ZR and ZR+ modules can reduce cost and complexity for high-level data center interconnects.

Importance of 400G ZR & ZR+

400G ZR and 400G ZR+ coherent pluggable optics take implementation challenges to the next level by adding some of the elements for high-performance solutions while pushing component design for low-power, pluggability, and modularity.

Conclusion

Although there are still many challenges to making 400G ZR and 400G ZR+ transceiver modules that fit into the small size and power budget of OSFP or QSFP-DD packages and also achieving interoperation as well the costs and volume targets. With 400Gbps high optical bandwidth and low power consumption, 400G ZR & ZR+ may very well be the new generation in longer-reach optical communications.

Original Source: 400G ZR & ZR+ – New Generation of Solutions for Longer-reach Optical Communications

400G OSFP Transceiver Types Overview

400G

OSFP stands for Octal Small Form-factor Pluggable, which consists of 8 electrical lanes, running at 50Gb/s each, for a total of the bandwidth of 400Gb/s. This post will give an introduction of 400G OSFP transceiver types, the fiber connections, and some QAs about OSFP.

400G OSFP Transceiver Types

Below lists some current main 400G OSFP transceiver types: OSFP SR8, OSFP DR4, OSFP DR4+, OSFP FR4, OSFP 2*FR4, and OSFP LR4, which summarize OSFP transceiver according to the two transmission types (over multimode fiber and single-mode fiber) they support.

Fibers Connections for 400G OSFP Transceivers

400G OSFP SR8

Figure 1 OSFP SR8 to OSFP SR8.jpg
  • 400G OSFP SR8 to 2× 200G SR4 over MTP-16 to 2× MPO-8 breakout cable.
Figure 2 OSFP SR8 to 2 200G SR4.jpg
  • 400G OSFP SR8 to 8× 50G SFP via MTP-16 to 8× LC duplex breakout cable with up to 100m.
Figure 3 OSFP SR8 to 8 50G SFP.jpg

400G OSFP DR4

  • 400G OSFP DR4 to 400G OSFP DR4 over an MTP-12/MPO-12 cable.Figure 1 OSFP SR8 to OSFP SR8.jpg
  • 400G OSFP DR4 to 4× 100G DR4 over MTP-12/MPO-12 to 4× LC duplex breakout cable.
Figure 4 OSFP DR4 to 4 100G DR.jpg

400G OSFP XDR4/DR4+

  • 400G OSFP DR4+ to 400G OSFP DR4+ over an MTP-12/MPO-12 cable.
  • 400G OSFP DR4+ to 4× 100G DR over MTP-12/MPO-12 to 4× LC duplex breakout cable.
Figure 5 OSFP DR4+ to 4 100G DR.jpg

400G OSFP FR4

400G OSFP FR4 to 400G OSFP FR4 over duplex LC cable.

Figure 6 OSFP FR4 to OSFP FR4.jpg

400G OSFP 2FR4

OSFP 2FR4 can break out to 2× 200G and interop with 2× 200G-FR4 QSFP transceivers via 2× CS to 2× LC duplex cable.

400G OSFP Transceivers: Q&A

Q: What does “SR8”, “DR4”, “XDR4”, “FR4”, and “LR4” mean?

A: “SR” refers to short range, and “8” implies there are 8 optical channels. “DR” refers to 500m reach using single-mode fiber, and “4” implies there are 4 optical channels. “XDR4” is short for “eXtended reach DR4”. And “LR” refers to 10km reach using single-mode fiber.

Q: Can I plug an OSFP transceiver module into a QSFP-DD port?

A: No. QSFP-DD and OSFP are totally different form factors. For more information about QSFP-DD transceivers, you can refer to 400G QSFP-DD Transceiver Types Overview. You can use only one kind of form factor in the corresponding system. E.g., if you have an OSFP system, OSFP transceivers and cables must be used.

Q: Can I plug a 100G QSFP28 module into an OSFP port?

A: Yes. A QSFP28 module can be inserted into an OSFP port but with an adapter. When using a QSFP28 module in an OSFP port, the OSFP port must be configured for a data rate of 100G instead of 400G.

Q: What other breakout options are possible apart from using OSFP modules mentioned above?

A: OSFP 400G DACs & AOCs are possible for breakout 400G connections. See 400G Direct Attach Cables (DAC & AOC) Overview for more information about 400G DACs & AOCs.

Original Source: 400G OSFP Transceiver Types Overview

Cisco GLC-SX-MMD Compatibility Explained

Gigabit Ethernet, a significant breakthrough of telecommunication, stands for various technologies of transmitting signals in the speed up to 1000Mbp/s. GLC-SX-MMD module is the hot-pluggable input/output transceiver with small form-factor used in the transmission with the speed of 1000Mbp/s. GLC-SX-MMD transceiver modules can be used on many Cisco switches, such as Cisco Catalyst 2960-P switch, Catalyst 3560-CX and Catalyst 9400. So it’s necessary to know Cisco GLC-SX-MMD transceiver module, Cisco GLC-SX-MMD compatibility and clarify how to choose Cisco GLC-SX-MMD compatible 1000BASE-SX SFP transceiver.

What is Cisco GLC-SX-MMD Compatibility?

Cisco GLC-SX-MMD, one of the most commonly used standard Cisco SFP, is a hot-swappable input/output device which plugs into a Gigabit Ethernet port. It is popular for intra-building links in co-location facilities and large office buildings. The following chart shows the detail of GLC-SX-MMD module.

Wavelength
850nm
Max Data Rate
1000Mbps
Interface
LC duplex
Max Cable Distance
550m over OM2 MMF
Cable Type
MMF
Protocols
MSA Compliant, IEEE 802.3z
TX Power
-9.5 ~ – 3dBm
Commercial Temperature Range
0 to 70°C (32 to 158°F)

GLC-SX-MMD Compatible 1000BASE-SX: Why Do We Need It?

1000BASE-SX SFP is a standard of fibre optic Gigabit Ethernet which operates over multi-mode fibre using a 770 to 860 nanometre, near infrared (NIR) light wavelength. Cisco GLC-SX-MMD is one kind of 1000BASE-SX SFP transceiver module. Besides, Cisco GLC-SX-MMD is compatible with 1000BASE-SX SFP that operates on multimode fibres for the length of 550m.There are many third party vendors supply Cisco GLC-SX-MMD compatible transceiver modules with the same good quality as Cisco SFP modules. The core difference between original brand transceiver module and third-party ones is on the manufacture instead of the module itself. Third-party transceiver modules cost about 90% less than Cisco even though they comply the same MSA. The principle reason for the huge price margin is markups. Third-party 1GbE SX SFP transceivers have as good quality as Cisco SFP transceivers but with low cost and are compatible with Cisco SFP,  that is why so many people choose the third-party ones.

How to Choose GLC-SX-MMD Compatible 1000BASE-SX Module?

There are numerous third party vendors who produce Cisco GLC-SX-MMD compatible 1000BASE-SX SFP transceiver modules. However, there is another confusing problem, how to choose a third party vendor on the market to buy 1000BASE-SX SFP transceiver modules? With so many choices, it’s important to consider the following factors: lifetime warranty, customer support and guaranteed compatibility.

Life Time Warranty

When your SFP modules come to a problem, the warranty of your SFP determines whether you need to buy a new SFP or not. Different vendors offer different warranty for customers. All the SFP transceiver modules in FS.COM are fully warranted against defects in material and workmanship with a lifetime guarantee. So FS.COM is a wise choice for customers.

Customer Support

For many customers, it’s confusing and challenging to make sure what they exactly need for their network. If a third party vendor can offer customised solution and give professional suggestions to customers, that will be very helpful. FS.COM is recommended for providing professional 24/7 customer service and free technical support.

Guaranteed Compatibility

GLC-SX-MMD Compatibility is the core factor of compatible 1000BASE-SX SFP transceiver modules. So you need to make sure with the third party vendor that the compatibility of their SFP transceiver modules are tested. FS.COM provides various kinds of optical transceivers compatible with major brands on the market, such as Cisco single mode SFP. Every SFP transceiver module is tested strictly on original brand switches in FS factory before shipping, so the brand compatibility is guaranteed.

1000BASE-SX SFP GLC-SX-MMD Compatibility

Conclusion

Cisco GLC-SX-MMD compatibility and 1000BASE-SX SFP are introduced in the above passage. Besides, this article gives you some suggestions about how to choose a third party vendor to buy 1000BASE-SX SFP with Cisco SFP compatibility. It’s necessary to tell you that FS.COM is a recommended transceiver module supplier, when your budget is not enough to buy original brand modules. For purchasing more high quality transceiver modules with low cost or for more products’ information, please contact us at sales@fs.com.

What is Optical Transceiver Module?

The speed and stability of the network is making a great leap forward thanks to the high bandwidth and low attenuation brought by fibre optics. Optical transceiver module is the major building block in fibre optic network, which conveys the information across communication channels for your optical systems. This article offers some rudiments about optical transceiver module and suggestions of choosing fibre patch lead for your transceiver module.

Working Principle of Optical Transceiver Module

An optical transceiver module is a device that uses fibre optical technology to send and receive data. The transceiver module has electronic components to encode or decode data into light pulses and then send them to the other end as electrical signals. To send data as light, it makes use of a light source, which is controlled by the electronic parts, and to receive light pulses, it makes use of a photodiode semiconductor.

Types of Optical Transceiver Module

Optical transceiver module is evolving rapidly to meet the escalating demand for speed and capacity. The tendency is that fibre optic transceiver module is evolving to have smaller size and higher data rate. The common types of optical transceiver module include GBIC, SFP, 10G SFP+, 40G QSFP+, CXP, CFP, CFP2, CFP4, CPAK and QSFP28.

The emergence of GBIC (Gigabit Interface Converter) is a milestone of transceiver module development, and it’s of epoch-making significance. As time went on, the size of transceiver was becoming smaller, so SFP (Small Form-Factor Pluggable) transceiver module came into being. It is half the size of GBIC, and it increases the port density of the same line card by two times. But this is not enough to meet the growing need of higher speed network connectivity. So 10G SFP+ (Small Form-factor Pluggable Plus) and 40G QSFP+ (Quad Small Form-factor Pluggable Plus) becomes new market favorites, for they have distinctly higher data rate and the same mini size as SFP. Besides, 100G optical transceiver module is also popular at present, with the types of CXP, CFP, CFP2, CFP4, CPAK and QSFP28. Various types of optical transceiver module can meet all kinds of customer’s requirements.

alt标签

Optical Transceiver Module Parameters

Optical transceiver module has three main parameters which shows it’s capacity of connectivity. They are wavelength, data rate and cable distance.

Wavelength

Wavelength is the band of light used in the transmission of optical signals. The main wavelength of optical transceiver module is typically around 850, 1300 and 1550 nm, for the attenuation of the fibre is much less at those wavelengths. Besides, multi-mode fibre is designed to operate at 850 nm and 1300 nm, while single-mode fibre is optimised for 1310 nm and 1550 nm.

alt标签
Data Rate

Data rate refers to how many bits of data the optic fibre carries per second. The widely applied data rates are 155Mbps, 1.25Gbps, 2.5Gbps and 10Gbps. The data rate of optical transceiver can provide backwards compatibility. So 155M optical transceiver module is also called FE transceiver, and 1.25G optical transceiver module is called GE transceiver.

Transmission Distance

Transmission distance is the distance an optical signal can be transmitted directly without amplification. The optical transceiver with the transmission distance shorter than 2km is classified to multi-mode optical transceiver module, while the optical transceiver with the transmission distance over 2km is classified to single-mode optical transceiver.

Except the above three parameters, optical transceiver module has other parameters, which are output power, receiving sensitivity, bias current, extinction ratio, saturated optical power and working temperature.

How to Choose Fibre Patch Lead for Transceiver Module

Optic transceiver modules are correspondingly connected with different fibre patch lead according to the type of their interface. When you choose a fiber patch cable, you need to consider the following factors: fiber type, transmission distance, data rate and transceiver interface.

We suppose that you need to choose a right patch cable used between fibre optic transceiver SFP-10G-SR and X2-10GB-SR. You know that SFP-10G-SR is 10GBASE-SR SFP+ transceiver module for MMF, 850-nm wavelength, LC duplex connector. And X2-10GB-SR is 10GBASE-SR X2 transceiver module for MMF, 850-nm wavelength, SC duplex connector. It’s easy to find that X2-10GB-SR needs SC connector, and SFP-10G-SR requires LC connector. So we should choose patch cable with SC-LC connector with MMF, 850-nm wavelength. In the same way, you can choose the proper fibre patch lead for your transceiver modules.

alt标签

Conclusion

I believe that you get more familiar with optical transceiver module after knowing its’ types, parameters and how to choose fibre patch lead for it. You also need to know that, the chief advantage of optical technology is its high data transfer rate, which can in practice be several thousand times as fast as a cable modem Internet connection. And fibre optic transceiver plays an important role in fibre optical transmission. For purchasing more high quality optical transceiver modules with low cost or for more products’ information, please contact us at sales@fs.com.

GLC-SX-MM VS GLC-SX-MMD VS GLC-SX-MM-RGD VS SFP-GE-S

Cisco is a worldwide leader in the telecommunication industry whose routers, switches are very welcome among the users. To work well with those Cisco networking applications, Cisco SFP transceivers are the best choice. GLC-SX-MM, GLC-SX-MMD, GLC-SX-MM-RGD and SFP-GE-S are different types of Cisco 1000BASE SFP transceiver module. All these transceiver modules comply with IEEE 802.3z 1000BASE standard. And since there are similar specifications for these four transceiver modules, users may be confused when they need to choose one SFP module for their Cisco switches. Here we’ll make a comparison of GLC-SX-MM, GLC-SX-MMD, GLC-SX-MM-RGD and SFP-GE-S transceiver modules to help you choose the suitable one.

GLC-SX-MM VS GLC-SX-MMD VS GLC-SX-MM-RGD VS SFP-GE-S

Which transceiver module will you choose?

Cisco Transceiver Datasheet

Here are the datasheets of these four different Cisco SFP transceiver modules.

GLC-SX-MM Datasheet

The GLC-SX-MM is programmed to be fully compatible and functional with all intended Cisco 1GB switching devices. This transceiver module operates on ordinary multimode fibre optic link spans of up to 550 meters in length.

Transceiver Module
GLC-SX-MM
Interface
LC duplex
Wavelength
850nm
Tx Power
-9.5 ~ – 3dBm
Receiver Sensitivity
< -17dBm
DOM Support
No
Temperature Range
0 to 70°C (32 to 158°F)
Cable Type
MMF
Price(US dollars)
6.00
GLC-SX-MMD Datasheet

The GLC-SX-MMD 1000BASE transceiver module is made for multimode fibre only. It’s the replacement of GLC-SX-MM which features an enhanced DOM interface. And this SFP fibre transceiver module operates on legacy 50 µm multimode fibre links up to 550 meters.

Transceiver Module
GLC-SX-MMD
Interface
LC duplex
Wavelength
850nm
Tx Power
-9.5 ~ – 3dBm
Receiver Sensitivity
< -17dBm
DOM Support
Yes
Temperature Range
0 to 70°C (32 to 158°F)
Cable Type
MMF
Price(US dollars)
6.00
GLC-SX-MM-RGD Datasheet

The GLC-SX-MM-RGD transceiver module is designed for Industrial Ethernet applications, including factory automation, intelligent transportation system and other deployments in hash environment. Compared with the ordinary transceivers which can endure the temperature ranging from 0 to 70°C,CLC-SX-MM-RGD can survive in the temperature from -40 to 85°C. It can support up to 550 meters of cabling.

Transceiver Module
GLC-SX-MM-RGD
Interface
LC duplex
Wavelength
850nm
Tx Power
-9.5 ~ – 3dBm
Receiver Sensitivity
< -17dBm
DOM Support
Yes
Temperature Range
-40 to 85°C (-40 to 185°F)
Cable Type
MMF
Price(US dollars)
6.00
SFP-GE-S Datasheet

The Cisco SFP-GE-S transceiver provides a high performance and cost-effective small form factor pluggable module for 1000BASE-SX Gigabit Ethernet and 1G Fibre Channel application. It’s designed for short wavelength applications. The max distance for this transceiver module is 550 meters. Besides, it also supports DOM.

Transceiver Module
SFP-GE-S
Interface
LC duplex
Wavelength
850nm
Tx Power
-9.5 ~ – 3dBm
Receiver Sensitivity
< -17dBm
DOM Support
Yes
Temperature Range
0 to 70°C (32 to 158°F)
Cable Type
MMF
Price(US dollars)
6.00

Differences of GLC-SX-MM VS GLC-SX-MMD VS GLC-SX-MM-RGD VS SFP-GE-S

From the above Cisco transceiver datasheet, we have learned that these Cisco transceiver modules share many similarities. All of them can support up to 550 meters over multimode fibres. And they are designed with the same 850m wavelength, Tx power and LC duplex interface. The main difference is the DOM (Digital Optical Monitoring) function and operating temperature.

·DOM function

Except GLC-SX-MM, all the others support DOM. With this function, users can monitor the transceiver module’s parameters in real time like optical input and output power, temperature and so on.

·Operating Temperature

GLC-SX-MM, GLC-SX-MMD and SFP-GE-S can work at the same temperature ranging from 0 to 70°C. But GLC-SX-MM-RGD SFP transceiver can work in a wider operating temperature of -40 to 85°, which is especially suitable for industrial Ethernet switches.

Conclusion

According to the above discussion, we can say GLC-SX-MM, GLC-SX-MMD, GLC-SX-MM-RGD and SFP-GE-S transceivers share many similarities. However, please note that the differences still exist, and ensure the transceiver module you choose will be compatible with the existing networking equipment. FS.COM is the one-stop shop to help you get these Cisco transceivers and other networking products that are compatible with the Cisco transceivers. If you have any questions in buying guide, please contact us via sales@fs.com.

Things About Cisco SFP Compatibility Matrix That Wiki Can’t Tell You

Transceiver module is the essential device of a network architecture. As a famous manufacturer of optical products, Cisco published a set of copper SFP transceiver modules to support copper networking. Here focus on Cisco SFP compatibility matrix to present a comprehensive Cisco SFP datasheet for you.

Overview of Cisco Copper SFP Transceiver Module

SFP stands for small form factor pluggable. Copper SFP transceiver is a hot-pluggable transceiver with RJ45 port, so it’s also called SFP RJ45 transceiver. SFP RJ45 transceiver supports 10/100/1000 BASE rate over Cat5 cables. In addition, RJ45 copper transceiver is usually used for transmitting data in a short distance, due to its transmission distance ranging from 10 to 30 metres or from 80 to 100 metres. And Cisco 1G SFP, copper and RJ45 Ethernet cables are much cheaper than the fibre ones, so it’s wise to choose a copper SFP transceiver to make use of the existing cabling system to optimise your network instead of using the fibre cables.

How to Choose A Cisco Copper SFP Transceiver Module

When you decide to buy a copper SFP transceiver, the quality and price matter a lot. But the price between OEM and the third party suppliers varies greatly. If you have plenty of money, you can order one directly from Cisco. If you search for a cost-effective solution, then the third party is a good choice. As for the quality, there are not many differences between Cisco and the third party’s products, because all products must meet the strict standards or MSA (Multisource Agreement). So it’s a wise decision to buy a copper SFP transceiver from a third party. Here I recommend you some copper SFP transceivers from FS.COM, whose transceivers are all tested before shipping.

SFP of Cisco SFP Compatibility Matrix

Figure: Choose a suitable copper SFP transceiver for your network

Cisco GLC-T Compatible 1000BASE-T SFP Transceiver

This GLC-T transceiver is a typical RJ45 transceiver, which is used for Cat5 wiring. The max data rate is 1000Mbps and the max cable distance is 100 metres, which is suitable to connect different switches or routers in a data centre. It’s compatible with most Cisco switches and some FS switches like S5800-48F4S Gigabit SFP switch.

Cisco GLC-TA Compatible 10/100/1000BASE-T SFP Transceiver

Similar with GLC-T SFP, but this copper transceiver supports 10/100/1000 auto negotiation. And the operating temperature is different. It is an extended temperature range from -5 to 85°C, while GLC-T is from 0 to 70°C. Furthermore, it also operates on standard Cat5 unshielded twisted-pair copper cabling of link lengths up to 100 metres.

Cisco SFP Compatibility Matrix for GLC-T and GLC-TA

Both GLC-T and GLC-TA are supported on a wide range of Cisco equipment. Here lists some of Cisco network switches compatible with GLC-T and GLC-TA Cisco SFP compatibility matrix.

Switches Support GLC-T and GLC-TA
Cisco ME-2400-24TS-A
Cisco WS-C2940-8TF-S
Cisco ME-3400G-12CS-A
Cisco WS-C2960-24PC-L
Cisco ME-3400G-2CS-A
Cisco WS-C2960-48PST-L
Cisco ME-3400-24FS-A
Cisco WS-C2960G-48TC-L
Cisco 3750 ME-C3750-24TE-M
Cisco WS-C2960S-24TS-S
Cisco ME-3600X-24FS-M (SFP ports)
Cisco 2960S-F48TS-S
Cisco ME-3800X-24FS-M (client ports)
Cisco WS-C2970G-24TS-E
Cisco 4900 ME-4924-10GE
Cisco WS-C2975GS-48PS-L
Cisco 6500 ME-C6524GS-8S
Cisco WS-C3560-24PS
Cisco 2900 WS-C2948G-GE-TX
Cisco WS-C3560G-48TS
More supportable switches, please check Cisco Transceiver Compatibility Matrix.

Besides Cisco switches, GLC-T and GLC-TA can also be used on FS.COM S5800-48F4S switch which is a 48 port SFP L2/L3 MPLS switch with 4 10G SFP+ ports. It is a very cost-effective solution for traditional or fully virtualised data centre.

Conclusion

Knowing Cisco SFP compatibility matrix can help us to choose the suitable transceiver and switch quickly. Cisco copper SFP transceiver modules produced by FS.COM can work well with Cisco switches and FS switches. Besides, our Cisco compatible SFPs are the most reliable quality products without high price, and supported by a long time warranty to offer you a great after-sales service. Know more about Cisco copper SFP modules, please visit FS.COM.

What Is QSFP56 and QSFP56-DD Transceiver Module?

Optical transceiver is one of the most important elements in data centres. Currently, QSFP28 transceiver module is the leading product on the market that supports 40 and 100 Gigabit Ethernet application. However, the world is constantly changing and evolving, new applications such as 4K HD video, webcast, VR and cloud computing have driven a sharp growth of network traffic. Therefore, today, QSFP56 and QSFP56-DD are developed to provide 200G or 400G applications, in order to satisfy people’s higher transmission speed.

Introduction of QSFP

In order to have a good understanding of QSFP56 and QSFP56-DD, we’d better know what QSFP is first. QSFP means Quad Small Form-Factor Pluggable, which is a compact, hot-pluggable transceiver. It’s an industry format that is developed and supported by many network component vendors, and it’s widely used to connect network switch, computer, server, video and some other communication systems. QSFP, QSFP56 and QSFP56-DD transceivers share the same package form, but their transmitting rates are different. This has lead to some other differences such as functions and applications, which will be explained in the following parts.

What Is QSFP56 Transceiver Module?

QSFP56 optical transceiver is the solution for 200G applications. It’s a pluggable transceiver module that has the same size as QSFP. However, this 200G transceiver can provide the top data rate of 50Gb/s of each channel. In addition, products of the transceiver will be compatible with previous QSFP standards. Therefore, the data centres are able to reuse and easily refresh their systems designs and cost in an effective way. Communication specialists forecast that QSFP56 transceivers may accelerate the upgrade of the next generation network switches that the density of their front panel would be doubled, which will create more network throughput. QSFP56 will be the most competitive product due to its powerful processing capacity.

QSFP56

Figure 1: Example of QSFP56 Transceiver Connection

What Is QSFP56-DD Transceiver Module?

QSFP56-DD refers to a double-density QSFP optical transceiver that supports 200Gbps and 400Gbps Ethernet applications. It’s designed to employ eight lanes that operate up to 25Gb/s NRZ modulation or 50Gb/s PAM4 modulation. This means the new 400Gbps optical transceiver will increase the bandwidth and panel density by several times compared to the similarly sized QSFP transceivers. It’s based on the widely applied QSFP interconnection system, which is particularly suitable in data centres and HPC centres. In addition, this transceiver provides backward compatibility to lower-speed QSFP forms, so that when the technicians need to upgrade their networks to a higher speed, they could continue to use the other existing cabling infrastructure.

qsfp-dd-vs-qsfp

Figure 2: QSFP-DD vs QSFP

Conclusion

Traffic growth for data centres operators and service suppliers requires the adoption of 200G and 400G optical interfaces in the next generation of network devices. QSFP56 and QSFP56-DD transceiver modules are the best innovations to support customers with high speed and reliable connections. With these optical transceivers, technicians are able to achieve a breakthrough in network transmitting capability. We believe that the applications of QSFP56 and QSFP56-DD are the general trend in the future.

Related Article: Global Optical Transceiver Market: Striding to 200G and 400G