Tag Archives: optical transceiver

Transceiver Solutions for Cisco Catalyst 9300 Series Switch

This year, Cisco unveiled the Catalyst 9000 family, shaping the new era of intent-based networking. The Network. Intuitive. The Cisco Catalyst 9000 Series switches are the next generation of enterprise-class switches built for security, Internet of Things (IoT), mobility, and cloud. The Cisco Catalyst 9000 Series switches come in three main varieties: The Catalyst 9300, the Catalyst 9400 and the Catalyst 9500. Here, the post will give an emphasis on Cisco Catalyst 9400 series switches and transceiver solution for them.

Overview of Cisco Catalyst 9300

The Catalyst 9300 Series is the next generation of the industry’s most widely deployed stackable switching platform. Built for security, IoT, and the cloud, these network switches form the foundation for Cisco’s Software-Defined Access, the leading enterprise architecture. In addition, the Cisco Catalyst 9300-based models support a variety of uplink modules for both copper and fiber uplink support. These models add even more flexibility to the interface choices that you can make in a single Cisco Catalyst 9300 Switch or in a stack of Cisco Catalyst 9300 Switches.

cisco catalyst 9300

Supported Transceiver Modules for Cisco Catalyst 9300

The Cisco Catalyst 9300 Series Switches support optional network modules for uplink ports. All modules are supported across all 9300 platforms:

  • 4 x 1 Gigabit Ethernet network module
  • 4 x 1, 2.5, 5, or 10 Gigabit Ethernet network module
  • 8 x 10 Gigabit Ethernet network module
  • 2 x 40 Gigabit Ethernet network module

100G Solution

Model Number Transceiver Description Interface Max Cable Distance
CFP-100G-SR10 100GBASE-SR10 CFP form factor transceiver module for multi mode fiber, short wavelength over 10 lanes, in the 850-nm wavelength window MTP/MPO-24 Up to 100m on OM3/<150m on OM4
CFP-100G-LR4 100GBASE-LR4 CFP form factor transceiver module for SMF, 4 LAN-WDM lanes in the 1310-nm wavelength window LC duplex 10km
CFP-100G-ER4 100GBASE-ER4 CFP form factor transceiver module for SMF, 4 LAN-WDM lanes in the 1310-nm wavelength window LC duplex 40km
QSFP-100G-SR4-S 100GBASE-SR4 QSFP form factor transceiver module for multi mode fiber, short wavelength over 4 lanes, in the 850-nm wavelength window LC duplex 100m
QSFP-100G-CWDM4-S 100GBASE CWDM4 QSFP form factor Transceiver for single mode fiber, 4 CWDM-WDM lanes in the 12761-1331-nm wavelength window LC duplex 2km
QSFP-100G-PSM4-S 100GBASE PSM4 QSFP form factor transceiver module for single mode fiber, short wavelength over 4 lanes, in the 1195-1325-nm wavelength window MTP/MPO-12 500m
QSFP-100G-LR4-S 100GBASE-LR4 QSFP form factor transceiver module for SMF, 4 LAN-WDM lanes in the 1310-nm wavelength window LC duplex 10km

40G Solution

Model Number Transceiver Description Interface Max Cable Distance
QSFP-40G-SR4 40GBASE-SR4 QSFP+ transceiver module for MMF, 4-lanes, 850-nm wavelength MTP/MPO 150m on OM4
QSFP-40G-CSR4 40GBASE-CSR4 QSFP+ transceiver module for MMF, 4-lanes, 850-nm wavelength MTP/MPO 400m on OM4
QSFP-40G-SR4-S 40GBASE-SR4 QSFP+ transceiver module for MMF, 4-lanes, 850-nm wavelength MTP/MPO 150m on OM4
QSFP-40G-SR-BD 40G QSFP Bi-Directional transceiver module for duplex MMF LC duplex 150m on OM4/100m on OM3/30m on OM2
QSFP-40G-ER4 40GBASE-LR4 QSFP40G transceiver module for Single Mode Fiber, 4 CWDM lanes in 1310nm window Muxed inside module LC duplex 40km
QSFP-40GE-LR4 100GBASE-LR4 QSFP form factor transceiver module for SMF, 4 LAN-WDM lanes in the 1310-nm wavelength window LC duplex 10km
WSP-Q40GLR4L 40GBASE-LR4 QSFP40G transceiver module for Single Mode Fiber, 4 CWDM lanes in 1310nm window Muxed inside module LC duplex 2km

25G Solution

Model Number Transceiver Description Connector Type Cable Type
SFP-H25G-CU1M 25G Copper Cable 1-meter SFP28 to SFP28 Passive Copper Cable
SFP-H25G-CU2M 25G Copper Cable 2-meter SFP28 to SFP28 Passive Copper Cable
SFP-H25G-CU3M 25G Copper Cable 3-meter SFP28 to SFP28 Passive Copper Cable
SFP-H25G-CU5M 25G Copper Cable 2-mete SFP28 to SFP28 Passive Copper Cable
SFP-25G-SR-S 25GBASE-SR SFP+ transceiver module for MMF, 850-nm wavelength LC duplex MMF

10G Solution

Model Number Transceiver Description Interface Max Cable Distance
SFP-10G-SR 10GBASE-SR SFP+ transceiver module for MMF, 850-nm wavelength LC duplex 300m over OM3
SFP-10G-SR-S 10GBASE-SR SFP+ transceiver module for MMF, 850-nm wavelength LC duplex 300m over OM3
SFP-10G-SR-X 10GBASE-LRM SFP+ transceiver module for MMF and SMF, 1310-nm wavelength LC duplex 300m over OM3
SFP-10G-LRM 10GBASE-LRM SFP+ transceiver module for MMF and SMF, 1310-nm wavelength LC duplex 220m
SFP-10G-LR 10GBASE-LR SFP+ transceiver module for SMF, 1310-nm wavelength LC duplex 10km
SFP-10G-LR-S 10GBASE-LR SFP+ transceiver module for SMF, 1310-nm wavelength LC duplex 10km
SFP-10G-LR-X 10GBASE-LR SFP+ transceiver module for SMF, 1310-nm wavelength LC duplex 10km
SFP-10G-ER-S 10GBASE-ER SFP+ transceiver module for SMF, 1550-nm LC duplex 40km
SFP-10G-ZR 10GBASE-ZR SFP+ transceiver module for SMF, 1550-nm LC duplex 80km
SFP-10G-BX40D-I 10G SFP+ Bidirectional for 40km, downstream LC duplex 40km
SFP-10G-BX40U-I 10G SFP+ Bidirectional for 40km, upstream LC duplex 40km
DWDM-SFP10G-49.32 10GBASE-DWDM 1549.32 nm SFP+ (100-GHz ITU grid) LC duplex 40km
DWDM-SFP10G-60.61 10GBASE-DWDM 1560.61 nm SFP+ (100-GHz ITU grid) LC duplex 40km
CWDM-SFP10G-1470 CWDM 1470 nm SFP+ 10 Gigabit Ethernet Transceiver Module LC duplex 20km
CWDM-SFP10G-1490 CWDM 1490 nm SFP+ 10 Gigabit Ethernet Transceiver Module LC duplex 20km
XENPAK-10GB-ER 10GBASE-ER XENPAK transceiver module for SMF, 1550-nm wavelength SC duplex 40km
XENPAK-10GB-LR 10GBASE-LR XENPAK transceiver module for SMF, 1310-nm wavelength SC duplex 10km
X2-10GB-LR 10GBASE-LR X2 transceiver module for SMF, 1310-nm wavelength SC duplex 10km
X2-10GB-SR 10GBASE-SR X2 transceiver module for MMF, 850-nm wavelength SC duplex 300m over OM3 MMF
XFP-10GLR-OC192SR Cisco multirate XFP transceiver module for 10GBASE-LR Ethernet and OC-192/STM-64 short-reach (SR-1) Packet-over-SONET/SDH (POS) applications,SMF LC duplex 10km
XFP-10GER-OC192IR Cisco multirate XFP transceiver module for 10GBASE-ER Ethernet and OC-192/STM-64 intermediate-reach (IR-2) Packet-over-SONET/SDH (POS) applications, SMF LC duplex 40km

Conclusion

Digital disruption is changing how we think about our networks. Whether customers or employees, the “experience” has become a strategic imperative. The Cisco Catalyst 9300 Series fixed access switches are designed to help you change your network from a platform of connectivity to a platform of services. If you are in need of compatible optical transceivers for Catalyst 9300, give FS.COM a shot. FS.COM provides a wide range of supported optical transceivers for Cisco Catalyst 9300 series switch. Each one of them has been tested with assured 100% compatibility to them.

Optical Transceivers for FIs

Understanding FIs

A FI is the core component of a UCS solution. FIs are typically configured as highly available clustered pairs in production environments. It’s possible to run a single FI-based design as a proof of concept test deployment before actually implementing it in production. FIs provide the following two capabilities:

  1. Network connectivity to both LAN and SAN
  2. UCS infrastructure management through the embedded management software, UCSM, for both hardware and software management

FIs are available in two generations, namely Cisco UCS 6100 series and Cisco UCS 6200 series. The core functionality is the same in both generations; however, UCS 6200 series has a newer generation Application Specific Integrated Circuit (ASIC), higher throughput, and increased number of physical ports. Both generations can be upgraded to the latest UCSM software.

FIs provide converged ports. Depending on the physical Small Form Factor Pluggable (SFP) transceivers and FI software configuration, each port can be configured in different ways. Cisco 200 series FI ports can be configured as Ethernet ports, Fiber Channel over Ethernet (FCoE) ports, or Fiber Channel (FC) ports. On the other hand, 6100 series converged ports only support Ethernet and FCoE (they also support FC, but only in the expansion slot).

Cisco 6200 Series switches

In production, FIs are deployed in clustered pairs to provide high availability. Cisco-supported implementation requires that clustered FIs be identical. The only possibility for having different FIs in a cluster is during a cluster upgrade.

Exploring Connectivity Transceivers for FIs

A variety of SFP transceivers are available for The Cisco UCS 6200 series. These transceivers provide south-bound IOM connectivity and north-bound network and storage connectivity. They are based on industry-standard SFP+ specifications.

Transceivers can be selected depending on the technology, for example, Ethernet or FC, and also according to the distance requirements. For shorter distances between FIs, IOMs, and north-bound network switches, twinax cables with integrated SFP is an economical alternative as compared to fiber optic SFP.

The most commonly used transceivers include following:

  • Cisco SFP-10G-SR: This is a multimode optical fiber 10Gbps Ethernet SFP that can be used for distances up to 400 meters.
  • Cisco SFP-10G-LR: This is a single-mode optical fiber 10Gbps Ethernet SFP that can be used for distances up to 10 Km.
  • Cisco SFP-10G-TET: This is a low power consuming multimode fiber optic 10Gbps Ethernet SFP that can be used for distances up to 100 meters.
  • Cisco SFP-H10GB-CuxM: These are the twinax cables providing low cost 10Gbps Ethernet connectivity and are available in 1, 3, 5, 7 and 10 meter configurations.
  • Cisco SFP-H10GB-ACU10M: This is a 10-meter-long twinax cable providing 10Gbps Ethernet. At a length of 10 meters, this cable requires active transceivers at both ends.
  • Cisco GLC-T: 1000BASE-T SFP or SFP-compatible ports only,these are based on the SFP Multi Source Agreement (MSA) and compact RJ-45 connector assembly. For SFP-compatible ports only.
  • Cisco GLC-SX-MMD: These modules supporting dual data-rate of 1.25Gbps/1.0625Gbps and 550m transmission distance with MMF, for SFP-compatible ports only.
  • Cisco GLC-LH-SMD: These modules supporting dual data-rate of 1.25Gbps/1.0625Gbps and 10km transmission distance with SMF, for SFP-compatible ports only.
  • DS-SFP-FCxG-xW: These are multi-mode and single-mode fiber optic FC transceivers that are available at 2, 4, and 8Gbps transfer speeds.

1000Base-SX SFP Transceiver

Where to buy These Optical Transceivers

Fiberstore provide a full range of optical transceivers, such as SFP+ (SFP Plus) transceiver, X2 transceiver, XENPAK transceiver, XFP transceiver, SFP (Mini GBIC) transceiver, GBIC transceiver, CWDM/DWDM transceiver, 40G QSFP+ & CFP, 3G-SDI video SFP, WDM Bi-Directional transceiver and PON transceiver. All our fiber transceivers are 100% compatible with major brands like Cisco, HP, Juniper, Nortel, Force10, D-link, 3Com. They are backed by a lifetime warranty, and you can buy with confidence. We also can customize optical transceivers to fit your specific requirements.

A PON Based on Code-division Multiplexing Access

Because of the Internet and broadband networks were introduced, the emerging applications – such as teleconferencing, video on demand, and high quality audio transmission has strict high flux optical access network quality of service (QoS) capabilities. However, the infrastructure of current access networks suffers from limited bandwidth, high network-management costs, poor flexibility, and low security, which prevent networks from delivering integrated services to their users. Due to sophisticated optical components and electronic circuits, optical fiber links has become used in access networks. Passive optical network (PON) and different multiplexing technology is put forward under this background, including the wavelength division multiplexing (WDM), 1 time division multiplex (TDM), 2 and optical code division multiplexing (OCDM).

PONs have been standardized for FTTH solutions and are deployed by network-service providers worldwide. Even though PONs based on TDM (TDM-PON) effectively use fiber bandwidths, they have limitations regarding transmission speed, burst synchronization, security, dynamic bandwidth allocation, and ranging accuracy. Wavelength division multiplexing (WDM) technology has also been proposed for PONs. When used in conjunction with PONs (WDM-PON), this emerging technology becomes more favorable as the required bandwidth increases, but it failed to attract attention from industry due to the high cost of optical component. Other schemes for optical access networks are currently under study worldwide.

Optical code division multiplexing access (OCDMA) systems have attracted attention in recent years, because the number of advantages, including its asynchronous access ability and flexibility of user distribution, support for variable bit rate, traffic and security “bursts” unauthorized users. OCDMA is an very attractive multi-access technique for access systems like local-area networks and the first mile, but no detailed network -design schemes have been developed to date. A PON based on code-division multiplexing access (CDMA) has been proposed using pseudo-random and Walsh codes for user identification. However, signature processing for multiple access is done in the electrical domain using an application – specific integrated circuit (ASIC), and not in the optical field as we are pursuing.

We have developed the OCDMA-PON, a network structure of PON in conjunction with OCDMA, i.e., a different multiple-access technology from TDM and WDM. OCDMA technology achieves signature processing light rather than the electrical domain using an optical encoder/decoder.

Optical-line terminator (OLT) of the optical-code-division multiplexing access/passive optical network (OCDMA-PON) system. Rx, Tx: Receiver, transmitter. OOC: Optical orthogonal code. ODN: Optical distribution network. ONU: Optical network unit. ONT: Optical network termination. n: Counter.

For the forward channels, the source is encoded at the OLT and the downstream signal is transmitted at a wavelength of 1550nm. Every user is a assigned a unique optical orthogonal code and identified by a correlation operation at the optical decoder based on fiber Bragg gratings (FBGs). To reduce multi-user interference (MUI), the nonflattened source spectrum can be compensated by a flatness +compensator before entering the FBG encoder. Another benefit is a flattened source is that it relaxes the accuracy requirements regarding the achievable precision with which the phase can be controlled and maintained stably when the number of users increases. For the backward channel from the optical network unit (ONU) optical network terminal (ONT) to the OLT, the upstream is transmitted at a wavelength of 1310nm. After upstream traffic passes the optical transceiver module, which it is sent to multiple decoders, each of which recovers the information for each user.

Upstream of a stable wavelength is usually required with a stabilized laser source at the ONU’s transmitter. The downstream signal from the OLT to ONU/ONT passes through a circulator to the detector, where the user’s information is separated through optical correlation with his or her unique OCC using a balanced receiver. The downstream control signal is also obtained and the control unit is passed to the network. For the upstream, the signal from the ONU to the OLT is encoded by the OCC for user identification by the optical encoder. This is then transmitted through optical fiber link from tifert. Our scheme has several advantages. For example, any user may add or drop into the network at random and the network is running asynchronously.

Our OCDMA-PON system is composed of an OLT and an ONU. Every ONU is identified by its own cde address. The signal is modulated with both frame information and an address-code sequence. The former is used to complete the data load switch, which help to identify different users.

Figure 1 compares the bit-error rate (BER) with the ONU-transmitter input power for two cases, one affected by interference (for example, MUI or from different noise contributions) and a second based on a back to back configuration. In this case, we assume that the amount ONUs/ ONTs is 30 and the bit rate of downstream flow is 1.25gb/s. We found that the sytem that includes interference exhibits much worse performance than that using the back to the back configuration, with approximately 6dB penalty at a BER of 10−9. For the OCDMA-PON, we confirm that MUI is the dominant degradation source (see Figure 3) and must be included in the network design.

Figure 1. Performance of the OCDMA-PON for back-to-back configuration and with interference. N-active: Number of active users. R-downstream: Downstream-traffic bit rate.

Figure 2 compares the BER performance as the number of active users increases for the CDMA-PON and OCDMA-PON systems. We assumed that the bit rate of downstream traffic is 1.25Gb/s for a fiber-link length of 10km. The OCMDA-PON scheme exhibits a similar performance to the CDMA-PON when the number of users is large. For example, for 30 users and a BER of 10−9, OCDMA-PONs can only increase the number of users compared to that supported by CDMA-PONs by 10%. However, the advantage of OCDMA-PONs over CDMA-PONs becomes obvious when the number of users supported by the OCDMA-PON is small (see Figure 4). Note that the signature is processed in the electrical domain by ASIC with Walsh code for user identification in CDMA-PONs, while the optical domain is used by the FBG encoder/decoder based on source-spectrum flattening and a balanced detector with the prime codes for user identification in OCDMA-PONs. Taking into account the higher bit rate and higher bandwidth offered by OCDMA-PONs based on optical processing of user signatures, we still prefer an OCDMA-PON scheme with intensity modulation. To further improve the performance of the OCDMA-PON, we need to solve the MUI-imposed degradation problems and improve the optical encoder/decoder.

Figure 2. CDMA-PON versus OCDMA-PON comparison as the number of ONUs/ONTs increases. L: Length.

Our OCDMA-PON system is different from classical PONs in that OCDMA is used for multiple-user access instead of TDM or WDM, and the OCDMA-PON scheme combines the advantages of both the PON and OCDMA technologies, including flexible network assembly, fair bandwidth division, differentiated services or QoS in teh physical layer, Asynchronous access, support for variable bit rate and burst, and the security of an unauthorized user traffic. Based on comprehensive comparisons between the OCDMA-PON and the previously studied CDMA-PON, we find that the former scheme exhibits a better BER performance than the latter for small numbers of users.

In summary, OCDMA-PON offers several advantages over CDMA-PON, including higher bit rate, higher bandwidth, and better security against unauthorized users. We continue to work towards realizing an experimental demonstration of the OCDMA-PON system.