Tag Archives: Fibre Channel

What Should You Know About Fibre Channel?

Before Fibre Channel appears, SCSI (small computer system interface) was used as the transmission interface between servers and clustered storage devices. But as the high speed demands keep increasing, Fibre Channel replaces SCSI inevitably due to its higher transmission data rate, flexibility, and long distance. This article is going to introduce you some details about Fibre Channel.

What Is Fibre Channel?

Fibre Channel, short for FC, is a technology for transmitting data between computer devices at data rate of 1, 2, 4, 8, 16, 128 Gbps. It’s mainly used in storage area networks (SAN) in commercial data centres. It’s useful for connecting computer servers to shared storage devices and for interconnecting storage controllers and drives.

Fibre Channel Transceivers

Except optical fibre cable, Fibre Channel transceiver is the other vital equipment to connect the Fibre Channel network in data centres. It provides the interface between Fibre Channel systems and the optical fibres of the SAN. FS.COM offers SFPs and SFP+s that are compatible with Fibre Channel. Fiberstore Fibre Channel SFPs support the distance up to 80km and the data rate of 2G/4G. As to our Fibre Channel SFP+ transceivers, they can support the data rate up to 8Gbps and 10Gbps. In Fiberstore, you can also find some compatible brands of FC transceivers including Cisco, Juniper, Brocade, HPE, etc. What’s more, all these modules have been tested to assure 100% compatible. For your information, the following table shows some hot FC transceivers for 2G/4G and 8G/10G network applications.

Model Description
37656 2G Fibre Channel SFP 1310nm 10km DOM Transceiver
15376 Cisco DS-SFP-FC8G-ER Compatible 8G Fibre Channel SFP+ 1550nm 40km DOM Transceiver
15231 Cisco DS-SFP-FC8G-SW Compatible 8G Fibre Channel SFP+ 850nm 150m DOM Transceiver
15386 HPE (ex QLogic) AJ718A Compatible 8G Fibre Channel SFP+ 850nm 150m DOM Transceiver
39630 HPE (ex Brocade) AJ716B Compatible 8G Fibre Channel SFP+ 850nm 150m DOM Transceiver
35932 Brocade XBR-000163 Compatible 8G Fibre Channel SFP+ 850nm 150m DOM Transceiver
Transfer to High Speed Fibre Channel

However, as the need for high-bandwidth never stops increasing, the data rate of 2G, 4G or even 8G can’t meet the high speed requirements. So many data centres move to higher Fibre Channel standards, for example, 16G Fibre Channel. 16G FC links increase the network speed twice as 8G FC and 40% faster than 10G FC. The transition to 16G FC makes data transfer smoother, quicker and cost-effective from the good side. But from the other side, the transition still faces some challenges. There might be some data communication error rates that may affect the network performance. And the physics of 16G FC can possibly bring some new restrictions on fibre cabling and transceiver modules. Therefore, before starting to transfer to higher speed Fibre Channel infrastructure, you should better follow the tips listed below.

First, cleaning issue. In fibre optics connection, contamination is thought as a big problem which may lead to link failure. So you should clean all the transceiver modules, connectors and other cable junctions to ensure there is no contamination in the fibre optic connection. Some fibre testers and cleaning tools are necessary for your cleaning work.

Second, analyze the optical power budget between transmit and receiver ports. It requires that the power margin (transmit power minus power loss during the data transmission through the cable) should be more than the receiver power of the optical transceivers. At the same time, it also should meet the FC protocol specification.

Third, measure the light level on the transmitting side and receiving side. You can use suitable fibre optical light source or optical power meter to measure the power level on critical links. If the power level were not in the right station, check whether the cable length is suitable or cable bend radius reaches the maximum. Then you are suggested to purchase customized bend insensitive fibre cable for your special use.


Fibre Channel is commonly used for the connection of SAN in enterprise storage. You can find 2G/4G FC SFPs, 8G/10G FC SFP+ modules and matching fibre patch leads from FS.COM. If you need to upgrade your Fibre Channel network to 16G or even higher, remember the above tips and make sure the 16G FC are compatible with 4G FC and 8G FC.

Related article: Netgear AGM731F Compatible SFP for Gigabit Ethernet and Fibre Channel Applications

Brief Analysis on Fibre Channel Technology

Fibre Channel is a set of advanced data transport standards that allow large amounts of data to be moved at multi-gigabit speeds between computers, servers, and other devices. Fibre Channel is widely applied because its high bandwidth, proven reliability and some other benefits. This article will talk about Fibre Channel information.


“Fibre” and “Fiber”

You must be confused the name of this standard. Why is it called “Fibre Channel” instead of “Fiber Channel”? The words “Fiber” and “Fibre” have the same meaning (“Fiber” is the international English spelling style, while “Fibre” is British style). “Fibre Channel” is the official spelling for the technology. “Fiber” just means the transmission media used in optical connections. The term “Fibre” is used by the Fibre Channel standard to refer to all the supported physical media types.

Fibre Channel Development History

Fibre Channel started in the late 1980s as part of the IPI (intelligent peripheral interface) to increase the capabilities of the IPI protocol. Fibre Channel was approved in 1988. The development of Fibre Channel standards serves as a model for the creation of modern transfer technology. From the beginning to its approval, it has gone through a number of iterations. Since it became more interoperable with other protocols and devices, it finally got the approval of American National Standards Institute (ANSI) in 1994.

At first, Fibre Channel was used in banks, large companies, and data centres. The installation is too complex especially when the transmitting media is optical fibre. But that bad situation has been changed. Today Fibre Channel seems to be a good choice for organizations with growing data storage needs.

Fibre Channel Benefits

Fibre Channel is more likely to be a high-speed switching system that interconnects local devices. Fibre Channel has the benefits of high speed, easy scalability, and attainable network lengths.

    • High speed. Fibre Channel can provide consistent bandwidth of 2 Gbps or 4 Gbps. The rate is expected to double in a few years to 8 Gbps. It will meet the increasing needs of network users.
    • Scalability. Fibre Channel networks perform with equal reliability, high rates, and flexible configuration. So it’s scalable up to thousands of ports even though device connections consist hundreds of integrated servers from different vendors.
    • Guaranteed in-order delivery. Fibre Channel in-order delivery of raw block data. In-order delivery greatly boosts network efficiency. And some applications like video and IP streaming require this. Fibre Channel can naturally streams video frames in order, reducing bottlenecks that would degrade the video’s required speed per second.
Fibre Channel Deployment

A successful network deployment requires a lot. You must first know your needs and decide which type of Fibre Channel is the best suitable for your network. Is it a new network or an additional one? What’s the total physical length of the network? How many devices? To answer these questions, you may consider the cabling and connector type.


Cable — Copper or Fibre

It’s important to choose the right cable type for your network interconnection. To choose copper or fibre, it depends on the distances between the Fibre Channel devices being about to be connected.

Copper cable can be used for short distance. It’s typical in point-to-point and other topologies when devices are mounted in the same rack or are located in the same room. Copper cable is durable and can withstand being stepped on or pulled. It’s easy for installation and maintenance.

While, fibre optic cable is for long distance since the distance between devices become longer than before, maybe in different buildings or on different floors of a building. Compared to copper cable, fibre optic cable is immune to the electrical resistance and electromagnetic interference (EMI) which affect signals carried over copper cable. It can support higher data rates. But the problem is that the signal strength over fibre cable is easily to be damaged by the dirt, dust or other material defects in the fibre cable. So fibre optic testing is a must for high performance of the entire network. And much more cares and special tools are needed during fibre optic cable installation.


Nearly all Fibre Channel switches requires SFP transceiver modules. It’s very common to see 2G and 4G Fibre Channel SFP transceivers in the fibre optics market. For 2G and 4G FC SFPs, the interface is designed as “LC duplex”. When plug in LC patch leads, you should better avoid touching the end face of the connector to ensure the network work with long-term, consistent performance and reliability. If the cable is not preterminated, it will be more complex. You need to strip cable’s outer jacket and the fibre coating to attach the connector. All fibre optic connectors should be carefully tested after installation. If it’s possible, try to buy high quality and certified preterminated cables from reliable vendors.


Fibre Channel is a flexible, scalable, high-speed data transfer interface that can operate over both copper and fibre optical cable. FS.COM provides 2G and 4G Fibre Channel SFP transceivers which can support distance up to 80 km. All the transceivers have been fully tested. We also offer preterminated duplex LC patch cords for Fibre Channel deployment. For more detailed information, please contact via sales@fs.com.