Tag Archives: fiber patch panel

Wall Mount VS Rack Mount Patch Panel

Patch panels are termination units, which are designed to provide a secure, organized chamber for housing connectors and splice units. Its main function is to terminate the fiber optic cable and provide connection access to the cable’s individual fibers. Patch panels can be categorized into different types based on a few different criteria. Last time, we have shed light on the copper and fiber patch panel and now let’s learn a different pair of it, namely wall mount patch panel and rack mount patch panel.

Wall Mount Patch Panel

As the name suggests, wall mount patch panel is a patch panel fixed on the wall.The wall mount patch panels are designed to provide the essential interface between multiple fiber cables and optical equipment installed on the customer’s premises. The units offer networking and fiber distribution from the vault or wiring closet to the user’s terminal equipment.

This kind of patch panel consists of two separate compartments. As shown below, the left side is used for accommodating outside plant cables entering the building, pigtails and pigtail splices. Whereas, the right side is designed for internal cable assembly networking. And both sides have a door secured with a quarter turn latch.

wall mount patch panel

Rack Mount Patch Panel

The rack mount patch panel usually holds the fibers horizontally and looks like a drawer. Rack mount panel is designed in 1U, 2U, 4U sizes and can hold up to 288 or even more fibers. They can be mounted onto 19″ and 23″ standard relay racks. The rack mount enclosures include two kinds. One is the slide-out variety and the other incorporates a removable lid. As for the latter one, the tray can be pulled out and lowered to 10 degree working angle or even further 45 degree working angle to provide ease of access for maintenance or installation work.

rack mount patch panel

Wall Mount VS Rack Mount Patch Panel

  • Installation

When installing wall mount patch panels, users need to leave at least 51mm additional space on each side to allow opening and removing the doors. Although it can be easily mounted to the wall by using the internal mounting holes, four screws are required when it is attached to a plywood wall, expansion inserts with wood screw for concrete walls and “molly bolts” for sheet rock. However, the installation of a rack patch panel just needs four screws without drilling the wall.

  • Space Occupation

Thinking from another perspective, the advantage of wall mount patch panels is that they allow you to optimize your work space by keeping equipment off floors and desks,which is superior to the rack mount patch panel.

  • Application

Both panels can be applied to Indore Premise Networks, Central offices (FTTx), Telecommunication Networks, Security Surveillance Applications, Process Automation & Control, Systems and Power Systems & Controls, while the rack mount patch panel has an advantage over the wall mount patch panel in that it can be applied to Data Centers.

Conclusion

To sum up, patch panels are available in rack mounted and wall mounted and are usually placed near terminating equipment (within patch cable reach). Both types can provide an easy cable management in that the panel ports can be labeled according to location, desktop number,etc. to help identify which cable from which location is getting terminated on which port on the patch panel, and changes can be made at the patch panel. The world-wide renown FS.COM can provide you the best quality rack mount and wall mount patch panel. Buyers are welcome to contact us.

Fiber Patch Panel for High Density Data Center

Fiber optic cable has been increasingly applied to meet the need of high speed network. In data centers, the cabling infrastructure turns to be more complicated. Under that situation, keeping good cable management is necessary since messy cabling will cause fiber optic loss and not easy for troubleshooting. Then fiber patch panels can serve as the tools for cabling systems.

Fiber-Patch-Panel

A fiber patch panel is also called fiber distribution panel. It’s used to terminate the fiber optic cable and provide connection to individual spliced fibers. Besides, fiber patch panels can create a secure environment for exposed fibers, housing connectors and splice unites.

Fiber Patch Panel Types

Fiber patch panels can be divided into two types. Both types can house, organize, manage and protect fiber optic cable, splices and connectors.

One is rack mount enclosure. Usually the rack mount enclosure holds the fibers horizontally and looks like a drawer. Rack mount enclosure is designed in 1U, 2U, 4U sizes and can hold up to 288 or even more fibers. The rack mount enclosures include two kinds. One is the slide-out variety and the other incorporates a removable lid. The sliding design of panels gives engineer easy access to the fibers inside but it’s more expensive. The lid type is less expensive but requires the user to remove the whole enclosure from the rack to gain internal access.

The other is wall mount enclosure. While wall mount enclosure is designed for enclosed wall mounting of adapter panels or splice trays. They are fabricated from steel sheets and finished with a light textured black powder coat. These panels can be easily mounted to any wall using the internal mounting holes. They can protect fibers from dust or debris contamination and organize the cables.

 wall-mount

Fiber Patch Panel Structure

A typical fiber patch panel contains four parts: enclosed chamber (rack mount or wall mount), adapter panels, connector adapters (providing low optical loss connection through mating appropriate connectors) and splice tray (organizing and securing splice modules). Adapters on a fiber patch panel are available in different shapes, such as LC, SC, MTP, etc. Most times, all adapters are of the same type in a panel. But sometimes a panel with different types of adapters is needed when more than one type of fiber optic connectors used in a network.

Fiber patch panel has two compartments. One contains the bulkhead receptacles or adapters, and the other is used for splice tray and excess fiber storage. Patch cable management trays are optional for some patch panels and make possible the neat storage of excessive patch cable lengths.

Fiber Patch Panel Ports

Fiber patch panel ports provide a place for data to enter and exit the panel. The number of these ports vary from 12, 24, 48, 64, 72, 96 to 288 and even more. Actually there is no limit to the number of ports on a patch panel. As long as there is enough room, you can fill the enclosure without interfering with the integrity.

FS.COM offers a 288 fibers 4RU rack mount fiber optic enclosure, loaded with 12 slots duplex fiber adapter panels. This high density patch panel provides a flexible and modular systems for managing fiber terminations, connections, and patching in all applications. With its high fiber densities and port counts, it maximizes rack space utilization and minimizes floor space. This enclosure makes it easy for network deployment, moves, adds, and changes. It’s a perfect solution for engineers to do the fiber termination and distribution.

288-fiber enclosure

Fiber Termination in the Patch Panel

In a patch panel, pigtail or field termination can be used for the connection. If it uses the pigtail approach, a splice tray is needed in the patch panel. This method provide the best quality connection and is usually the quickest. The second method uses fiber optic connector for field termination. A fiber optic connector is directly installed onto the individual fibers. This method usually takes longer time than pigtail but doesn’t need a splice tray in the patch panel. However, the connection quality may not be as good as pre-terminated pigtails.

Summary

Fiber patch panels are very useful especially in the high density data center. They feature with the benefits of easy fiber installation, maximum flexibility and manageability. Although patch panels are attractive, it’s the best only when it fits your application. No matter rack mount or wall mount type, loaded or unloaded, you should better choose the most suitable one based on your own situation.

Related article: Dos & Don’ts of Cable Management

The Conventional Fiber Adapter Plates Need to Improve

Optical fiber has been used as a medium for telecommunication as well as networking because it’s flexible enough and could be bundled as cables. Optical fiber has been especially advantageous for long-distance communications because light propagates through the fiber with little attenuation compared to electrical signals carried by conventional wire cables. Over short distances, for instance networking within a building, optical fiber interconnect cables save space in cable ducts because a single fiber can carry more data than a single electrical cable.

Interconnect cables are generally used as intra-equipment jumpers or patch cords. For example, some typical applications include patching active electronics to nearby patch panels, cable cross-connection on distribution frames, and connecting work area outlets to terminal equipment. Fiber optic patch cords comprise a length of cable with a plug or connector on one, or both ends, and can also be referred to as connectorized fiber optic cables. A patch panel typically comprises a connecting hardware system (e.g., racks, adapter plates, arrays of adapters, etc.) that facilitates cable termination and cabling administration via the use and administration of standard-conforming adapters. (The following figure is a 12 port fiber patch panel)

12 port fiber patch panel

Various fiber optic cable connector and adapter designs can be used to meet the requirements of corresponding Fiber Optic Connector Intermateability Standard (FOCIS) documents. Note that the term adapter, when used in reference with optical fiber, has been defined by the optical fiber industry and standards organizations as a mechanical termination device designed to align and join two like optical connectors.

In some designs, fiber adapter plates provide the means to support and align the interconnection of connectorized fiber optic cables in structured voice or data cabling networks. Conventionally, fiber adapter plates use a metal or plastic plate or support panel having a number of cutouts to accept discrete fiber optic adapters which are typically linked to the adapter plate by screws or clips. Therefore, these adapter plates use a removable attaching mechanism (e.g., screws, clips, latches, etc.) to attach the adapter plate to an enclosure or patch panel.

However, such conventional adapter plates suffer from drawbacks due to the assembly of so many discrete parts. For example, alignment of the connecting optical fibers is crucial to minimize loss across the adapter. While internal fiber optical interface details (e.g., alignment, cable separation, etc.) are specified by rigid standards, the adapter to adapter plate connection is more springy. As a result, excessive tolerances can result in additional mechanical play between the adapter and the adapter plate which can, sometimes, to enable excessive stresses and bend radii of the connecting fiber optic cables.

As a further example, such conventional assemblies by their nature require costly assembly steps. As a cost saving measure, some of the assembly steps can be passed on to the end user. However, this can lead to increasing set up time, having costs of its own, and can result in end user frustration. Furthermore, conventional adapter plate panels are often unlabeled or stamped with labels that are hard for the end user to ascertain, specially when the adapter plate is fully outfitted with adapters and cabling.

It is thus desired to provide fiber adapter plates that improve upon these and other deficiencies of conventional fiber adapter plates.

Fiber adapter panels provided By Fiberstore, loaded with LC, SC, ST, FC, MT-RJ, MPO and unloaded blanks. With products compatible for trusted brands including Black Box, Wirewerks, Mr-technologies, Corning, Leviton, Panduit Opticom adapter panel and more.