Tag Archives: DWDM SFP+

How to Extend 40G Connection up to 80 km?

As 40G connectivity is accelerating, many data centers prepare to migrate from 10G to 40G. But the link distance between 10G and 40G switches is a big challenge. This article can help you extend 40G connection distance.

Current 40G QSFP+ to 4x10G Connection—Max 10 km

As we know, 40GBASE-SR4 QSFP+ is designed for short distance of up to 150m connection. 40GBASE-PLR4 QSFP+ can support long distance link of up to 10 km. Both 40G QSFP+ modules are interfaced with 12-fiber MTP/MPO and can break out into 4x10G connection. To build 10G-40G connection, for instance, using singlemode 8-fiber MTP-LC harness cable to connect 40GBASE-PLR4 QSFP+ and 4x10G SFP+ modules. As the direct connection distance between two 40GBASE-PLR4 QSFP+ optics can reach at most 10km, it’s easy to understand that the connection between 10G and 40G may be shorter. However, we provide a method to extend 40G connection to 80km distance. Continue to read this article and find the answer.

10km max

Equipment for Extending 40G QSFP+ Connection

To extend 40G QSFP+ connection distance, we have to use WDM transponder OEO (Optical-Electrical-Optical) repeater. OEO repeater allows connection between fiber to fiber Ethernet equipment, serving as fiber mode converter, or as fiber repeater for long distance transmission. It can also function as CWDM/DWDM optical wavelength conversion. Now we will use a multi-service transport system, including a hot-swappable plug-in OEO card which only occupies 1 slot. The other space can be left for holding more cards such as DCM, EDFA, OLP. On the left side, there is a card for centralized network management.

WDM transponder oeo

This is a 4-channel multi-rate WDM transponder with an OEO-10G card containing 8 SFP/SFP+ slots and can support up to 11.3G rate. The OEO card can convert 1G~11.3 Gbps Ethernet signals into a corresponding wavelength in CWDM and DWDM network infrastructures. Transmission distance can reach 80 km.

Except WDM transponder OEO repeater, we still need DWDM Mux/Demux and DWDM SFP+ to extend the distance to 80 km. DWDM Mux/Demux is to combine 4x10G signals of different wavelengths on one single fiber so that it’s the best solution to increase network capacity and save cost. Here we use 40-channel C21-C60 dual fiber DWDM Mux/Demux. So we can choose suitable 10G DWDM SFP+ modules 80km transceiver between the wavelengths of C21 and C60.

For your reference, the equipment for 40G connection extension mentioned above are from FS.COM. You can select those of other specifications according to your own needs.

Equipment Details
Fiber Transceiver 40GBASE-PLR4 QSFP+ 1310nm 10km MTP/MPO Transceiver
Generic Compatible 10GBASE-LR SFP+ 1310nm 10km DOM Transceiver
C21-C60 DWDM SFP+ 80km DOM Transceiver
Transponder Repeater 4-channel WDM transponder OEO repeater
DWDM Mux/Demux 40 Channels C21-C60 Dual Fiber DWDM Mux Demux with Monitor Port, 3.0dB Typical IL
Extend 40G QSFP+ Connection to 80 km

Install 40GBASE-PLR4 QSFP+ into QSFP+ port of a switch and 4 10GBASE-LR SFP+ into the Ethernet ports of the WDM transponder OEO repeater. Then plug a singlemode 8-fiber MTP-LC harness cable to connect 40GBASE-PLR4 QSFP+ and 4 SFP+ modules. Because of the OEO repeater function, 4x10G Ethernet signals are converted into corresponding wavelengths in DWDM network infrastructure. Then install 4 x 10G DWDM SFP+ transceivers into other four ports of OEO repeater. Next step is to connect DWDM SFP+ modules on the OEO repeater and DWDM Mux/Demux by using LC duplex patch cables. In this way, 40G QSFP+ distance can be extend up to 80 km.

40G-80km

Conclusion

10 km transmission distance is not the limit of 40G to 4x10G connection. From this article, you can extend 40Q QSFP+ to 80 km by mainly applying WDM transponder OEO repeater, DWDM Mux/Demux and 10G DWDM SFP+. If need to break your network distance limit, please visit our site www.fs.com or contact us via sales@fs.com.

Related articles:

Economically Increase Network Capacity With CWDM Mux/DeMux
Check out All CWDM Transceiver Modules
User Guide for CWDM MUX/DEMUX