Tag Archives: cat6a ethernet cable

24AWG vs 26AWG vs 28AWG Ethernet Cable: What Is the Difference?

An Ethernet cable serves the basic purpose to connect devices to wired networks. However, not all Ethernet cables are created equal. When shopping for Cat5e, Cat6 or Cat6a Ethernet cable, you may notice an AWG specification printed on the cable jacket, like 24AWG, 26AWG, or 28AWG. What does the term AWG denote? 24AWG vs 26AWG vs 28AWG Ethernet cable: what is the difference?

What Does AWG Mean?

The AWG stands for American Wire Gauge, a standardized system for describing the diametre of the individual conductors of wires that make up a cable. The higher the wire gauge number, the smaller the diametre and the thinner the wire. Thicker wire carries more current because it has less electrical resistance over a given length, which makes it better for longer distances. For this reason, where extended distance is critical, a company installing a network might prefer Ethernet wires with the lower-gauge, thicker wire of AWG24 rather than AWG26 or AWG28.

24AWG vs 26AWG vs 28AWG Ethernet Cable: What Is the Difference?

To understand the differences among 24AWG vs 26AWG vs 28AWG Ethernet cable with different AWG sizes, let’s take a look at how the wire gauge affects the wire conductor size, the transmission speed & distance as well as the resistance & attenuation.

Wire Diametre of Conductors

AWG is used as a standard method denoting wire diametre, measuring the diametre of the conductor (the bare wire) with the insulation removed. The smaller the gauge, the larger the diametre of the wire as listed in the chart below. The larger diametre of 24AWG network cable makes for a stronger conductor which is a benefit when being pulled on during installation or when routed through machines and other equipment.

AWG Wire Diametre
24 Gauge 0.0201 inches
26 Gauge 0.0159 inches
28 Gauge 0.0126 inches
Transmission Speed & Distance

The wire gauge of the Ethernet cable has no relationship with the transmission speed of the cables. So there are 24AWG, 26AWG and even 28AWG Cat5e Ethernet cable and Cat6 Ethernet cable on the market. Copper network cables with a smaller gauge (larger diametre) are typically available in longer lengths because they offer less resistance, allowing signals to travel farther. Therefore, the 24AWG Ethernet cable is the way to go especially for those longer runs, while the 26AWG and 28AWG Ethernet cable are more preferred for relatively shorter distances.

Resistance & Attenuation

The larger the diametre of a wire, the less electrical resistance there is for the signals it carries. A 24AWG network cable will offer less resistance than a 26AWG or 28AWG network cable. Since the 24AWG conductor is larger than 26AWG cable, it has lower attenuation over length properties. Thus when selecting between 24AWG vs 26AWG Ethernet cable, 24AWG would be preferable to 26AWG, because 24AWG Ethernet cable is more durable with lower attenuation than 26AWG Ethernet cable. All shielded (STP, FTP, SSTP) cables on the market are 26AWG and all unshielded cables are 24AWG or 28AWG.

However, you may also noticed that the thinner versions of Cat5e, Cat6 and Cat6a slim patch cables constructed of 28AWG wire have sprung up on the market. These slim Ethernet cables can be more than 25% smaller in diametre than their full-size counterparts. The 28AWG slim Ethernet cables with thinner wires improve airflow in high-density racks and can be more easily installed in crowded space compared to 24AWG or 26AWG Ethernet cables.

24AWG vs 26AWG vs 28AWG Ethernet Cable: Which Is Best?

24AWG vs 26AWG vs 28AWG Ethernet cable, which one is the best option for your network? The smaller the gauge, the larger the diametre of the wire. The larger the diametre of a wire, the less electrical resistance there is for the signals it carries. For long runs with more potential damage, the 24AWG Ethernet cable is the best, because it comes with stronger conductors with lower attenuation. If you’re considering to save more space, the 28AWG slim Ethernet cable would be more suitable to enable higher density layouts and simplify cable management.

Ethernet Cable Types Explained: All You Need To Know

An Ethernet cable or network cable is the medium for wired networks to connect the networking systems and servers together. It plays an integral role in cabling for both residential and commercial purposes. When it comes to using Ethernet cables for setting up network connections, choosing a perfect cable is always a daunting task since there are various Ethernet cables types available for different purposes. According to the bundling types of the twisted pairs, the wiring forms, and the cable speeds or bandwidths, Ethernet cable types on the market can be classified into shielded or unshielded, straight-through or crossover, Cat5/Cat5e/Cat6/Cat7/Cat8 Etherent cables respectively. How to identify the most suitable one for your needs among the diversified Ethernet cable types? This post will give you the answer.

Bundling Types in the Jacket: Shielded vs Unshielded Ethernet Cable

Shielded (STP) Ethernet cables are wrapped in a conductive shield for additional electrical isolation, then bundled in the jacket. The shielding material is used to reduce external interference and the emission at any point in the path of the cable. Unshielded (UTP) Ethernet cables without the shielding material provide much less protection against such interference and the performance is often degraded when interference or disturbance is present. STP cables are more expensive due to the shielding, which is an additional material that goes into every meter of the cable. Compared with the unshielded Ethernet cable, the shielded Ethernet cable is heavier and stiffer, making it more difficult to handle.

Wiring Forms: Crossover Cable vs Straight-through Ethernet Cable

Straight-through cable refers to an Ethernet cable with the pin assignments on each end of the cable. In other words Pin 1 connector A goes to Pin 1 on connector B, Pin 2 to Pin 2 and so on. Straight-through wired cables are most commonly used to connect a host to client.

Straight-Through-cable

In contrast, the crossover cables are very much like straight-through cables with the exception that TX and RX lines are crossed (they are at opposite positions on either end of the cable. Using the 568-B standard as an example below you will see that Pin 1 on connector A goes to Pin 3 on connector B. Pin 2 on connector A goes to Pin 6 on connector B and so on. Crossover cables are most commonly used to connect two hosts directly.

Crossover cable

Speeds & Bandwidths: Cat5/Cat5e/Cat6/Cat6a/Cat7/Cat8 Ethernet Cable

Defined by the Electronic Industries Association, the standard Ethernet cable types can be divided into Cat5/Cat5e/Cat6/Cat6a/Cat7/Cat8 categories to support current and future network speed and bandwidth requirements.

Cat5 Ethernet Cable

Cat5 Ethernet cable introduced the 10/100 Mbps speed to the Ethernet, which means that the cables can support either 10 Mbps or 100 Mbps speeds. A 100 Mbps speed is also known as Fast Ethernet, and Cat5 cables were the first Fast Ethernet-capable cables to be introduced. Cat5 Ethernet cable can also be used for telephone signals and video, in addition to Ethernet data.

Cat5e Ethernet Cable

Cat5e Ethernet cable is an enhanced version of Cat5 cable to handle a maximum bandwidth of 100 MHz. Cat5e Ethernet cable is optimized to reduce crosstalk, or the unwanted transmission of signals between data channels. Although both Cat5 and Cat5e Ethernet cable types contain four twisted pairs of wires, Cat5 only utilizes two of these pairs for Fast Ethernet, while Cat5e uses all four, enabling Gigabit Ethernet speeds. Cat5e cables are backward-compatible with Cat5 cables, and have completely replaced Cat5 cables in new installations.

Cat6 Ethernet Cable

Cat6 Ethernet cable is certified to handle Gigabit Ethernet with a bandwidth of up to 250 MHz. It has better insulation and thinner wires, providing a higher signal-to-noise ratio. Cat6 Ethernet cables are better suited for environments in which there may be higher electromagnetic interference. Cat6 Ethernet cables can be available in both UTP and STP forms, and they are backward-compatible with both Cat5 and and Cat5e cables.

Cat6a Ethernet Cable

Cat6a Ethernet cable improves upon the basic Cat6 Ethernet cable by allowing 10 Gbps (10,000 Mbps) data transmission rates and effectively doubling the maximum bandwidth to 500 MHz. Category 6a cables are usually available in STP form, therefore they must have specialized connectors to ground the cables.

Cat7 Ethernet Cable

Cat7 Ethernet cable is a fully shielded cable that supports speeds of up to 10,000 Mbps and bandwidths of up to 600 MHz. Cat7 cables consist of a screened, shielded twisted pair (SSTP) of wires, and the layers of insulation and shielding contained within them are even more extensive than that of Cat6 cables.

Cat8 Ethernet Cable

The newly upgraded Cat8 Ethernet cable supports up to 2000MHz and speeds up to 40Gbps over 20 meters. It is fully backward compatible with all the previous categories. With inner aluminum foil wrapped around pairs and outer CCAM braid shielding, the Cat8 Ethernet cable can prevent from electromagnetic and radio frequency interference very well.

Conclusion

When setting up a wired connection in your home or office, you need to obtain the proper Ethernet cable types which can work with your equipment. If you are looking to connect two different devices such as computer to switch or router to hub, the straight-through cable may be the best solution. If you connect two computers together, you will need a crossover cable. The decision over UTP and STP Ethernet cable types depends on how much extent of electrical isolation is needed. When choosing among Cat5/Cat5e/Cat6/Cat7/Cat8 Ethernet cable types, it is undoubted that the more upgraded version can deliver better performance and functionality. It mainly depends on your speed and bandwidth requirement that would suit your equipment best.