Category Archives: Fiber Splitter

Fibre Splitter for FTTH Applications

Passive optical network (PON) has been widely applied in the construction of FTTH (fibre to the home). With PON architecture, network service providers can send the signal to multiple users through a single optical fibre, which can help them save great costs. To build the PON architecture, optical fibre splitter is necessary.

What Is Fibre Splitter?

The fibre splitter is a passive component specially designed for PON networks. Fibre splitter is generally a two-way passive equipment with one or two input ports and several output ports (from 2 to 64). Fibre splitter is used to split the optical signal into several outputs by a certain ratio. If the ratio of a splitter is 1×8 , then the signal will be divided into 8 fibre optic lights by equal ratio and each beam is 1/8 of the original source. The splitter can be designed for a specific wavelength, or works with wavelengths (from 1260 nm to 1620 nm) commonly used in optical transmission. Since fibre splitter is a passive device, it can provide high reliability for FTTH network. Based on the production principle, fibre splitters include Planar Lightwave Circuit (PLC) and Fused Bionic Taper (FBT).

PLC splitters are produced by planar technology. PLC splitters use silica optical waveguide technology to distribute optical signals from central office to multiple premise locations. The output ports of PLC splitters can be at most 64. This type of splitters is mainly used for network with more users.

The Structure of PLC splitters

Internal Structure

The following figure shows a PLC splitter. The optical fibre is splitted into 32 outputs. PLC chip is made of silica glass embedded with optical waveguide. The waveguide has three branches of optical channels. When the light guided through the channels, it is equally divided into multiple lights (up to 64) and transmitted via output ports.

1x32-plc-splitter

Outside Configuration

Bare splitter is the basic component of PLC fibre splitter. For better protection of the fragile fibre and optimised use, PLC splitters are often equipped with loose tube, connector and covering box. PLC splitters are made in several different configurations, including ABS, LGX box, Mini Plug-in type, Tray type, 1U Rack mount, etc. For example, 1RU rack mount PLC splitter (as shown in the figure below) is designed for high density fibre optical distribution networks. It can provide super optical performance and fast installation. This splitter is preassembled and fibres are terminated with SC connectors. It’s ready for immediate installation.

rack-mount-plc-spllitter

FBT splitters are made by connecting the optical fibres at high temperature and pressure. When the fibre coats are melted and connected, fibre cores get close to each other. Then two or more optical fibres are bound together and put on a fused taper fibre device. Fibres are drawn out according to the output ratio from one single fibre as the input. FBT splitters are mostly used for passive networks where the split configuration is smaller.

PLC Splitters From FS.COM

Fiberstore offers a wide range of PLC splitters that can be configured with 1xN and 2xN. Our splitters are designed for different applications, configurations including LGX, ABS box with pigtail, bare, blockless, rack mount package and so on.

Port Configuration Package Style Fibre Diameter
(Input/output)
Connector (Input/output) Pigtail Length
1×2 Steel tube, bare fibre 250μm None 1.5m
1×4 Mini module 900μm SC APC/UPC 2.0m
1×8 Pigtailed ABS box 2.00mm LC APC/UPC 3.0m
1×16 Mini plugged-in 3.0mm FC APC/UPC Customised
1×32 LGX ST APC/UPC
1×64 Splice Tray Type Customised
2×16 Rack mount
Conclusion

Fibre splitter is an economical solution for PON architecture deployment in FTTH network. It can offer high performance and reliability against the harsh environment conditions. Besides, the small sized splitter is easy for installation and flexible for future network reconfiguration. Therefore, it’s a wise choice to use fibre splitter for building FTTH network.

Comparison Between FBT and PLC Splitters

Enabling a single fibre interface to be shared among many subscribers, fibre optic splitters play an increasingly significant role in many of today’s optical networks. From FTTx systems to traditional optical networks, splitters provide capabilities that help users maximise the functionality of optical network circuits. In this article, I’d like to give a short introduction of fibre optic splitters.

Overview of FBT and PLC Splitters

In simple terms, a fibre optical splitter is a passive optical device that can split, or separate beams into two or more light beams. Based on the configuration of the splitter, these beams may or may not have the equal optical power as the original beam. By means of different constructions, the outputs of a splitter can have varying degrees of throughput, which is highly beneficial when designing optical networks.

fiber optic splitter

Now although technology continually evolves, and there are a variety of existing splitters in the market, the most two common types of fibre optic splitter are: fused biconic tapered splitter (FBT Splitter) and planar lightwave circuit splitter (PLC Splitter).

FBT is the traditional technology in which two fibres are placed closely together and fused together by applying heat while the assembly is being elongated and tapered. As the technology continues developing, the quality of FBT splitter is very good and they can be applied in a cost-effective way. Now FBT is designed to split power in optical telecommunication and widely used in passive networks, especially where the split configuration is relatively small.

FBT splitter.jpg

PLC splitter is a better choice for application where large split configurations are required. It uses an optical splitter chip to divide the incoming signal into multiple outputs. PLC splitter composes of three layers: a substrate, a waveguide, and a lid. The waveguide plays a key role in the splittering process which allows for passing specific percentages of light. Therefore, PLC splitters offer very accurate splits and a low loss. What’s more, PLC splitters have several types such as bare PLC splitter, blockless PLC splitters, fanout PLC splitter, mini-plug in type PLC splitter, etc.

PLC splitter.jpg

With the growth of FTTx worldwide, in order to serve mass subscribers, the demand for large split configurations in these networks has also grown quickly. Because of the performance benefits and overall low cost, PLC splitters are now the better solutions for these types of applications.

FBT Splitter vs. PLC Splitter

In optical networks, signals need to be splitted somewhere in order to serve for different customers. Splitter technology has made great progress in the past few years by introducing PLC splitter. However, being similar in size and outer appearance, the two types of splitter still have many differences. Here is a brief comparison of them.

Materials

FBT splitter is made out of materials that are easily available, for example, steel, fibre, hot dorm and others. All of these materials are cheap, which determines the low cost of the device itself. The technology of the device manufacturing is also relatively simple, which leads to its low prices as well. Compared with FBT splitters, the technology of PLC splitter is more complicated and expensive. It uses semiconductor technology production. Hence it is more difficult to manufacture PLC splitters. And the price of the device is higher.

Operating Wavelength

FBT splitters only supports three wavelengths: 850 nm, 1310 nm and 1550 nm, which makes its inability to works on other wavelengths. While PLC splitter can support wavelength from 1260 to 1650 nm. The adjustable rang of wavelength allows PLC splitter more wide applications.

Split Ratio

The split ratio of FBT splitter is up to 1:32, while the ratio PLC splitter goes up to 64, providing a high reliability. Furthermore, the signal in PlC splitter can be split equally due to technology implemented.

Temperature

In certain areas, temperature can be a crucial factor that affects the performance of optical components. Therefore, sometimes devices with good cold resistance is also vital. FBT splitter can work stable under the temperature of -5 to 75℃. PLC splitter can work at a wider temperature range of -40 to 85 ℃, providing relatively good performance in the areas of extreme climate.

Apart from the differences mentioned above, there are still other differences between FBT splitter and PLC splitter. For example, compared with FBT splitter, the size of PLC splitter is more compact. Hence, PLC spitter is more suitable for density applications.

Conclusion

In conclusion, this article introduce the fibre optical splitters and the differences between FBT splitter and PLC splitter. It’s significant to choose the most suitable splitters for your networks. There are a variety of splitters avaible in Fiberstore. If you want to know detailed information, please visit FS.COM.

Brief Introduction of Fibre Optic Splitter

Fibre optic splitters are quite important in today’s optical network. Splitters can help users maximize the functionality of optical network circuits. A fibre optical splitter is a passive optical device that can split, or separate, an incident light beam into two or more light beams. These beams may or may not have the same optical power as the original beam. The outputs of a splitter can have various degrees of throughput. And that is very useful to decide whether the splitter is used for network monitoring or for a loss budget in a passive optical network (PON) architecture when designing optical networks. This article will give brief introduction of fibre optical splitter.

There are two kinds of the most commonly used fibre optical splitters. And they are planar lightwave circuit (PLC) and fused biconical taper (FBT). PLC splitters (as shown in the following picture), from the name, it’s easy to find out that PLC splitter is based on planar lightwave circuit technology. It uses an optical splitter chip to divide the incoming signal into multiple outputs. It consists of three layers including a substrate, the waveguide, and the lid. The waveguide layer accepts the incoming optical signal and passes it to the outputs. FBT splitter is fused with a heat source similar to a fusion splice. Fibres are aligned in a group to create a specific location and length and will be fused with heat to meet the desired parameters such as insertion loss. Fused fibres are put in a V-shaped groove and fixed in a silica tube with a mix of epoxy and silica powder to get the proper heat.

1x16-Fiber-PLC-Splitter

Fibre Optical Split Ratios

Fibre optical splitters vary in numbers of inputs and outputs. The split ratios are based on the network use of fibre optical splitters. In a PON architecture, it uses splitters to split a single fibre into multiple fibres to feed as many as 64 end users. A typical split ratio in PON application is 1:32, or one in coming fibre split into 32 outputs.

Large split ratios like 1:32 or 1:64 are often found in some kind of housing. That’s because with so many fibres related to these splitters, a platform should be used to manage the splitter modules, patch modules, patch cables, etc. Most often a high-density fibre bay is required so that the splitters can be all placed in a distribution site or a PON enclosure. The PON cabinet plays a significant role in today’s applications since the space is so limited. When it comes to a high-density frame with varying split ratios and large number of patch cords, the distribution frame is critical for a good cable management.

Cost Saving in FTTx/PON Applications

As the city grows and subscribers increase, the network architect must deal with multiple distribution points and backhaul. To meet so many subscribers’ requirements, the flexibility in head-end locations, distribution points and split ratios becomes more significant. To network service provider, saving capital and operational costs is important.

On one side, fibre optical splitters can save fibre cost by reducing the fibre usage and that’s why they are so important in FTTx/PON networks. Using a single fibre to feed as many as 64 end users significantly reduces the fibre quantity. On the other side, the long-term operation costs can’t be ignored either in optical network splitter applications. That’s one of PON’s advantages. For example, it can decrease the power consumption.

Another way to save cost is to ease maintenance and increase the flexibility for smaller split ratios, which lead to more bandwidth per subscriber. For example, a service provider would likely need to split the optical terminal line (OLT) with a 1:2 splitter, and adjust the split ratios from there based on delivery to residential (1:32). These multiple split ratios can create flexibility in the network as long as the utilization of transport electronics such as OLT is concerned. Loss budget can be greatly influenced by the use of multiple splitters.

Conclusion

From the above content, to run a network architecture, the network success and cost should be paid attention. And fibre optical splitter is such a good device to increase the efficiency of optical infrastructure and save the capital and future operational cost.

Manufacturing Techniques of Fiber Optic Coupler

Fiber optic coupler is a lively type of passive components, and its basic function would be to achieve the optical power and fiber wavelength distribution. Single-mode fiber coupler is a passive component of a very broad application in optical fiber communication systems, fiber optic sensors, fiber optic measurement techniques and signal processing systems.

We use electronic couplers constantly, like a telephone coupler which lets you connect both a mobile phone and a fax machine towards the same telephone line. Optical couplers have similar functionality as electronic couplers. They split the signal to multiple points(devices). Fiber optic couplers are needed for tapping(monitoring the signal quality) or even more complex telecommunication systems which require a lot more than simple point-to-point connections, for example ring architectures, bus architectures and star architectures.

Fiber optic couplers could be either passive or active devices. The difference between active and passive couplers is that a passive coupler redistributes the optical signal without optical-to-electrical conversion. Active couplers are electronics that split or combine the signal electrically and utilize fiber optic detectors and sources for input and output.

You will find majorly three kinds of manufacturing technologies for fiber optic coupler: micro optics, planar waveguide and fused-fiber. Micro optics technologies use individual optic elements such as prism, mirrors, lens etc to construct an optical route which functions like a coupler. This can be an expensive approach and never as common as the other two sorts. Planar waveguides are more like semiconductors, such as PLC splitters. A planar wafer is used to create waveguide couplers. They are more often employed for high port count couplers for instance 12, 24, and 36 output ports.

Fuse-fiber couplers or FBT couplers make use of the simplest material – optical fibers. Multiple fiber cores are melted together which let light transmit among them. Fused primary technique is to burn melt together two fiber optic and stretching to reach the core polymer optical coupling together. The most crucial being the fiber optic splicing equipment. Fiber optic splicing is also the most important step. While some significant steps may be within the machine OEM, but after fused, you have to manually package.

This method has certain advantages in the production efficiency and product performance. These days it is the primary method for manufacturing an optical fiber coupler. In this way, optical fiber coupler produced properties happen to be significantly improved than before. Nonetheless, with the big number of applications within the military, aerospace and other high-tech fields, the fiber coupler have become increasingly demanding for insertion loss flatness, polarization sensitivity, device reliability, bandwidth and power and other aspects of the work.

These practical needs coupled with the manufacturing process submits higher requirements in order to meet these requirements. Scientists have done lots of research in various manufacturing techniques.