Category Archives: Fiber Optic Connectors

What is GBIC Module?

Nowadays, confusion appears when facing so many options on the fiber optic market, so being familiar with fiber optic equipment is helpful to select the one that exactly meets your need. When it comes to transceiver modules, various kinds of modules, like GBIC, SFP, QSFP, CFP and so on, may confuse you. What is GBIC? To help you get a general idea of GBIC module, this article will focus on what is GBIC module, types of GBIC and how to choose from GBIC and SFP.

What is GBIC?

Short for gigabit interface converter, GBIC module is a transceiver which converts electric currents to optical signals and the other way around. It is hot pluggable and connects with fiber patch cable. With SC duplex interface, GBIC module works at the wavelength of 850nm to 1550nm and can transmit signals through the distance of 550m to 80km. It is a cost-effective choice for data centers and office buildings. As the improvement of fiber optic technology, mini GBIC came into being. It is regarded as the advanced GBIC, for it has half the size of GBIC, but supports the same data rate as GBIC. Mini GBIC is called small form factor pluggable (SFP) transceiver, which is a popular optical transceiver module on the market nowadays.

What is GBIC

Types of GBIC

There are many types of GBIC transceiver modules, which differs in transfer protocol, wavelength, cable type, TX power, transmission distance, optical components and receive sensitivity. The following chart will show you the details of them.

Type
1000BASE-SX GBIC
1000BASE-LX GBIC
1000BASE-EX GBIC
1000BASE-EX GBIC
1000BASE-ZX GBIC
Form Type
GBIC
GBIC
GBIC
GBIC
GBIC
Wavelength
850nm
1310nm
1310nm
1550nm
1550nm
Interface
SC duplex
SC duplex
SC duplex
SC duplex
SC duplex
Cable Type
MM
SMF
SMF
SMF
SMF
TX Power
-9.5~3dBm
-9~3dBm
-2~3dBm
-5~0dBm
-5~0dBm
Commercial Temperature Range
0 to 70°C (32 to 158°F)
0 to 70°C (32 to 158°F)
0 to 70°C (32 to 158°F)
0 to 70°C (32 to 158°F)
0 to 70°C (32 to 158°F)
Max Data Rate
1000Mbps
1000Mbps
1000Mbps
1000Mbps
1000Mbps
Max Cable Distance
550m
10km
40km
40km
80km
Optical Components
VCSEL 850nm
DFB 1310nm
DFB 1310nm
DFB 1550nm
DFB 1550nm
DOM Support
YES
YES
YES
YES
YES
Receiver Sensitivity
< -17dBm
< -21dBm
< -24dBm
< -24dBm
< -24dBm

GBIC vs SFP: Which to Choose?

As is shown in the above passage, GBIC and SFP are both used in 1Gbit data transmission. So which to choose? You know that SFP modules have a distinctly smaller size compared with GBIC transceiver modules. Obviously, SFP has the advantage of saving place, so there could be more interfaces to be used on a switch. When to choose which? It depends on the situation and your need. If you already have a line card, then you should choose GBIC or SFP modules according to your empty interfaces type. Besides, if you are planning to buy a new line card for your switch and want to make a decision of using GBIC or SFP modules, then how many interfaces you need to use is the important factor to consider. Generally speaking, SFP line card has a higher port density than GBIC line card for SFP has a smaller form factor than GBIC modules. So if you need 2 fiber interfaces on your switch, 2 port GBIC line card is a good choice. If you need to use over 24 interfaces on your switch, then 48 port SFP line card is more possible to meet your need.

Conclusion

What is GBIC? What are the types of GBIC? And how to choose from GBIC and SFP? This article has given you the answers. With the above information, it’s much more possible for you to choose a GBIC or SFP transceiver wisely. If you need a little more help and advice with any of GBIC or SFP optics, then please do not hesitate to let us know. FS.COM provides various kinds of fiber optic transceivers, including GBIC, 1G SFP, 10G SFP+, 40G QSFP, 100G QSFP28 and so on. For purchasing high-quality transceivers with low cost or for more products’ information, please contact us at sales@fs.com.

What Is QSFP Connector, QSFP+ Connector and QSFP28 Connector?

Nowadays, fiber optic technology shows its unsurpassable advantage in telecommunication. Hence, optical transceiver modules are widely used in data center and other situations. When it comes to various types of data rate and interface of optical transceivers, there are lots of abbreviations to clarify. This article focuses on the introduction of QSFP connector, QSFP+ connector and QSFP28 connector. They share the same small form factor, but differ in supporting data rate and breakout connection.

QSFP Connector

QSFP is the abbreviation of Quad (4 channel) Small Form Factor Pluggable. Supporting Fiber Channel, Infiniband, Ethernet, Sonet/SDH and other proprietary interconnects, QSFP connector is a hot-pluggable, compact transceiver available for use in singlemode and multimode applications. QSFP transceiver can also support 4 independent channels which can transmit individually at the data rate up to 1.25Gbp/s and the aggregate speed of the 4 channels up to 4.3Gbp/s. For using 4x1G lanes, QSFP connector was only found in some FC/IB contexts.

QSFP+ Connector

Short for Quad Small Form Factor Pluggable Plus, QSFP+ connector is regarded as the enhanced generation of QSFP connector. Why do we call QSFP+ the plus one? Because it can support Infiniband, Fiber Channel and Ethernet at 10Gbp/s per channel, thus the combined data rate of the 4 channels can reach 40Gbp/s, which is a distinct improvement in data transmission speed. Besides, like QSFP connector, 40G QSFP+ interface can support transmission and network link over both singlemode and multimode infrastructures. To enable 40G QSFP+ connector to be splitted into 4 independent data streams for different network equipment, AOC breakout cable, DAC breakout cable and other types of breakout cables are used. Besides, the main types of QSFP+ connector include QSFP+ SR4, QSFP+ PLRL4, QSFP+ LR4 and OTU3, QSFP+ CSR4, QSFP+ UNIV, QSFP+ LR4L, QSFP+ SR Bi-Directional, QSFP+ PLR4, QSFP+ER4 and OTU3.

qsfp connector

QSFP28 Connector

With the same quad based interface as QSFP and QSFP+ connector, QSFP28 fiber optic transceiver can transmit optical signals at 100Gbp/s. Each channel of QSFP28 connector can transmit individually at the data rate up to 28Gbp/s. Outstripping CFP, CFP2 and CFP4 connectors, QSFP28 connector has become the preferred solution of 100G network upgrade for its high flexibility and smaller form type. The flexibility of QSFP28 allows it to be used in several kinds of combination, including 100Gbp/s, 2x50Gbp/s and 4x25Gbp/s. Like QSFP+ connector, depending on the application, there are different options of breakout cable to consider, such as AOC breakout cable, DAC breakout cable and other types of breakout cables. Besides, there is an important note, that a QSFP28 connector can’t be broken down into 10Gbp/s channels. However, QSFP28 is backward compatible, so when it is used in a QSFP+ port , it would allow a breakdown into 4x10Gbp/s SFP+ channels. Lastly, there are several types of QSFP28 connector: QSFP28 SR4, QSFP28 PSM4, QSFP28 CWDM4 and QSFP28 LR4.

qsfp28

Conclusion

QSFP, QSFP+ and QSFP28 connectors are introduced in this article from the aspects of form factor, supporting data rate, breakout connection and types. With the above information, it would be easier for you to choose QSFP, QSFP+ and QSFP28 connectors. QSFP connectors are often used in 4x1G lane. While QSFP+ connectors are mostly used in 40G lane, and QSFP28 connectors are mainly used in 100G lane. Besides, QSFP+ and QSFP28 can be splitted into several streams by using breakout cables. ALL in all, your choice need to depend on your network situation and requirement. If you need a little more help and advice with any of QSFP optics or fibre connectivity cables, then please do not hesitate to let us know. For purchasing high quality QSFP, QSFP+, QSFP28 connectors and QSFP cables with low cost or for more products’ information, please contact us at sales@fs.com.

LC Connector for High Density Data Centers

SC duplex connector was popular a few years ago. But as time goes on, smaller and more compact cabling components are required since the packing density of optical devices keeps increasing, namely high density. The smaller the shape, the more popular the component, just like development history of cellphone. Driven by this requirement, optic manufacturers start to produce mini components. The most widely known is the LC connector, a small form factor connector. The following article will introduce various types of LC connectors in details.

LC small form factor connector has just 1.25mm ferrule, half the size of the standard connector (compared with SC connector). Because of the high density design, LC connector solution can reduce the space needed on racks, enclosures and panels by approximately 50% throughout the network. So LC connector is a good solution for high density data centers. The LC connector uses RJ45 push-pull style plug that offers a reassuring, audible click when engaged. It makes moves, adds and changes easy and saves costs for you. Besides, the protective cap completely covers the connector end, which prevents ferrule end face from contamination and impact and enhances the network performance.

lc-lc-duplex

LC Uniboot

LC uniboot connector includes a finger latch release that there is no need for tools when making the polarity change. Some LC uniboot connectors are color-coded and labeled “A” and “B” to provide visual references when making a polarity change. The uniboot design is compatible with transceivers using the LC interface. The LC uniboot patch cords use special round cable that allows duplex transmission within a single cable, and it greatly reduces cable congestion in racks and cabinets comparing to standard patch cords. LC uniboot patch cord is perfect for high density applications. FS.COM LC uniboot patch cords are available in SM, OM3 or OM4 multimode fiber types to meet a wide variety of configurations and requirements.

uniboot-lc

Push-Pull LC Connector

If you have tried to release LC connectors in patch panels with high density, you must know how difficult it is. As to high density panel, thumbs and forefingers can not easily access to pull the connector. So some manufacturers start to offer a special LC connector which can be easily dealt with. And that’s push-pull tab LC connector.

Push-Pull-Tab-Patch-Cable

LC push-pull connectors offer the easiest solution for installation and removal. The special design is available in a compact model, ideal for minimizing oversized panels. With this kind of connector, you don’t need to leave additional space at the top or bottom to allow room for engaging the latch. The structure of the LC push-pull compact is designed as the latch can be slid back, instead of being pushed down, to facilitate smooth removal. It’s simple for installation and removal. Push-Pull LC patch cable allows users accessibility in tight areas when deploying LC patch fields in high density data centers. Push-Pull LC fiber patch cords are available in OM4, OM3 or single-mode fiber types to meet the demands of Gigabit Ethernet, 10 Gigabit Ethernet and high speed Fibre Channel.

Secure Keyed LC Connector

Secure keyed LC connectors are designed for network security and stability. 12 colors are available in FS.COM, including red, magenta, pink, yellow, orange, turquoise, brown, olive, etc. Connections only work when the color matches. The color-coded keying options provide design flexibility and facilitate network administration. It reduces risks and increases the security of network from incorrect patching of circuits. Secure keyed LC connectors feature low insertion loss, excellent durability.

lc-keyed

Conclusion

This article tells different types LC connectors, including common LC connector, LC uniboot, push-pull LC and secure keyed LC connector. The design of those LC connectors keeps improving to adapt to high density data centers. Nowadays, the trend of network is high speed and high density. So effective cable management is significantly important. And the key concern is how to manage more cables within less space. Thus, among so many kinds of interfaces, LC connector is the most frequently used and the most effective solution for space saving in data centers.