Category Archives: Fiber Cables

Five Basics About Fiber Optic Cable

A fiber optic cable is a network cable that contains strands of glass fibers inside an insulated casing. They’re designed for high performance data networking and telecommunications. Fiber optic cable carry communication signals using pulses of light, faster than copper cabling which uses electricity. They are becoming the most significant communication media in data center. Then how much do you know about them? This post serves as a guide for beginners.

Fiber Components

The three basic elements of a fiber optic cable are the core, cladding and coating. Core is the light transmission area of the fiber, either glass or plastic. The larger the core, the more light that will be transmitted into the fiber. The function of the cladding is to provide a lower refractive index at the core interface, causing reflection within the core. Therefore the light waves can be transmitted through the fiber. Coatings are usually multi-layers of plastics applied to preserve fiber strength, absorb shock and provide extra fiber protection.

Fiber Components

Fiber Type

Generally, there are two basic types of fiber optic cables: single mode fiber (SMF) and multimode fiber (MMF). Furthermore, multimode fiber cores may be either step index or graded index.

Single mode and multi-mode fiber-optic cables

Single mode optical fiber is a single strand of glass fiber with a diameter of 8.3 to 10 microns that has one mode of transmission. The index of refraction between the core and the cladding changes less than it does for multimode fibers. Light thus travels parallel to the axis, creating little pulse dispersion. It’s often used for long-distance signal transmission.

Step index multimode fiber has a large core, up to 100 microns in diameter. As a result, some of the light rays that make up the digital pulse may travel a direct route, whereas others zigzag as they bounce off the cladding. These alternative pathways cause the different groupings of light rays to arrive separately at a receiving point. Consequently, this type of fiber is best suited for transmission over short distances.

Graded index fibers are commercially available with core diameters of 50, 62.5 and 100 microns. It contains a core in which the refractive index diminishes gradually from the center axis out toward the cladding. The higher refractive index at the center makes the light rays moving down the axis advance more slowly than those near the cladding.

Fiber Size

Single mode fibers usually has a 9 micron core and a 125 micron cladding (9/125µm). Multimode fibers originally came in several sizes, optimized for various networks and sources, but the data industry standardized on 62.5 core fiber in the mid-80s (62.5/125 fiber has a 62.5 micron core and a 125 micron cladding. It’s now called OM1). Recently, as gigabit and 10 gigabit networks have become widely used, an old fiber design has been upgraded. 50/125 fiber was used from the late 70s with lasers for telecom applications. 50/125 fiber (OM2) offers higher bandwidth with the laser sources used in the gigabit LANs and can allow gigabit links to go longer distances. Laser-optimized 50/125 fiber (OM3 or OM4) today is considered by most to be the best choice for multimode applications.

Basic Cable Design

The two basic cable designs are loose-tube cable, used in the majority of outside plant installations, and tight-buffered cable, primarily used inside buildings.


The modular design of loose-tube cables typically holds up to 12 fibers per buffer tube with a maximum per cable fiber count of more than 200 fibers. Loose-tube cables can be all dielectric or optionally armored. The modular buffer-tube design permits easy drop-off of groups of fibers at intermediate points, without interfering with other protected buffer tubes being routed to other locations.

Tight-buffered cables can be divided into single fiber tight-buffered cables and multi-fiber tight-buffered cables. single fiber tight-buffered cables are used as pigtails, patch cords and jumpers to terminate loose-tube cables directly into opto-electronic transmitters, receivers and other active and passive components. While multi-fiber tight-buffered cables also are available and are used primarily for alternative routing and handling flexibility and ease within buildings.

Connector Type

While there are many different types of fiber connectors, they share similar design characteristics. Simplex vs. duplex: Simplex means 1 connector per end while duplex means 2 connectors per end. The following picture shows various connector styles as well as characteristics.

fiber cable connectors


Ultimately, what we’ve discussed is only the tip of the iceberg. If you are eager to know more about the fiber optic cable, either basics, applications or purchasing, please visit for more information.

Tips for Fiber Cable Installation You Should Know

Fiber cable installation is not an easy task for most of us. It’s thought as the job of professional engineers since special training is needed during the complicated process. But it would be better if you know knowledge of fiber cable installation in case that you need to run fiber cable in your home or business. This article is going to offer you some tips for fiber cable installation.


Before Fiber Cable Installation

Before starting fiber cable installation, please make sure there is fiber optic service in your area. If it’s available, find the nearest distribution box. What you need to do is to run fiber cable from the box to your house.

A considerate plan is the first step of successful fiber cable installation. Carefully design the cabling route. It would be better if you mark where the cable goes, into the walls, or underground, or through conduit… Point out all the termination points and splice points. At the same time, write down any potential problems you may come across during the installation. A good plan is also beneficial to avoid fiber cable waste.

Once finish the plan, you’re going to buy fiber optic cable for your applications. Except fiber optic cable, you need tools for cable management & installation, fiber splicing and fiber testing. So make a shopping list for your fiber cable installation. Then select a reliable fiber cable supplier who can meet the requirements of both high quality and low cost.

During Fiber Cable Installation
What You Should Do

Leave spare cable length—Each fiber cable for installation should be a few inches longer than the plan says. Because you can’t make sure everything goes as you wish. So you should leave plenty of spare fiber cables when beginning cable installation work.

Avoid electrical interference—Though fiber cable is not as vulnerable to electrical noise as copper cables, some devices, such as the boxes for fluorescent lights, may cause interference. So keep your fiber cable three or more feet from those devices.

Avoid end face contamination—The tip of fiber optic connector can be easily contaminated or damaged. So leave protective caps on until you are ready to plug into the equipment. Don’t forget to inspecting the end face before plugging in. If there is any contaminate, clean it.

Fiber network testing—Test each section of your fiber optic network. That’s easy to discover the problem and troubleshoot it. Don’t do this work until you finish the entire cable installation. In that situation, it’s hard to find out the trouble if the network fails.

What You Should Not Do

Don’t bend fiber cables. Fiber optic cables perform the best when it is running straight. But during installation in reality, sometimes bending can’t be avoided. Cables from different vendors may have different standards of bend radius. Or you can buy bend insensitive fiber cable for better performance.

Don’t pull too hard on the cable. Properly pull the fiber cable to avoid bending or snagging through the conduit or underground. However, don’t pull it too hard especially when the fiber cable is too short. Otherwise, it would ruin the cable or fiber optic connector.

Don’t mix and match different core sizes. Fiber optic cables are typically color coded. From the outside cable jacket, you can get information about fiber core sizes. To know more about fiber cable jacket, you can visit my last blog What Can We Get From Fiber Cable Jacket?

Don’t pinch the fiber cable. Pinch the fiber cable can squeeze the fiber and affect link performance. When use zip-ties, pay attention to this point.


Once you finish fiber cable installation, you can enjoy fiber optic network. See, fiber cable installation is not as tough as you think. Follow these tips mentioned above when you run cables for your house, you can keep away from most bothering issues.

What Can We Get From Fiber Cable Jacket?

Fiber optic cable is applied as the most advanced communication medium by more and more users. Compared with copper cable, it can support more and better optical signal transmission of voice, data, video, etc. and offer many other advantages. When purchasing fiber optic cables, you must see the cable jacket at first. So what information does the outside jacket tell? What type of cable jacket should you select? Come with me to find the secrets of fiber cable jacket.

Fiber Cable Jacket Introduction

Fiber optic cable is constructed very complicated from the inside core, cladding, coating, strengthen fibers to the outside cable jacket. The core made of plastic or glass is the physical medium for optical signal transmission. As bare fiber can be easily broken, cable outer jacket is needed for fiber protection. The cable jacket is the first line of moisture, mechanical, flame and chemical defense for a cable. Without the jacket, fiber optic cables are very likely to be damaged during and after installation.


Fiber Cable Jacket Characteristics

In most situations, robust cable jacket is better because the environment above or underground may be harsh. For better applications, you’d better take cable jacket seriously. Cable jacket is not as easy as you think. There are many characteristics you need to consider. Except the flexibility, it should withstand very low and high temperature. Whether the cable jacket has the good features of chemical and flame resistance. All these characteristics depend on cable jacket materials.

Fiber Cable Jacket Materials

Cable jacket is made of various types of materials. As mentioned above, the cable jacket should stand the test of different environmental conditions, including the harsh temperature, the sun & the rain, chemicals, abrasion, and so on. The following shows several common cable jacket materials for your reference.

PE (Polyethylene)—PE is the standard jacket material for outdoor fiber optic cables. It has excellent properties of moisture and weather resistance. It also has the good electrical properties over a wide temperature range. Besides, it’s abrasion resistant.

PVC (Polyvinyl Chloride )—PVC is flexible and fire-retardant. It can be used as the jacket materials for both indoor and outdoor cables. PVC is more expensive than PE.

LSZH (Low Smoke Zero Halogen)—LSZH jacket is free of halogenated materials which can be transformed into toxic and corrosive matte during combustion. LSZH materials are used to make a special cable called LSZH cable. LSZH cables produce little smoke and no toxic halogen compounds when these cables catch fire. Based on the benefits, LSZH cable is a good choice for inner installations.

Fiber Cable Jacket Color

Fiber cable jacket color depends on the fiber cable type. Fiber cable includes single-mode and multimode types. For single-mode fiber cable (Blog about single-mode fiber cable please read my blog What Are OM1, OM2, OM3 and OM4?), the jacket color is typically yellow. While for multimode cable ( more details on multimode fiber cable ), the jacket color can be orange (OM1&OM2 cable), aqua (OM3 cable) and purple (OM4 cable). For outside plant cables, the jacket color is black.

How to Choose Fiber Cables?

To choose a fiber optic cable depends on your own applications. I’ll talk about this from two sides of jacket color and jacket material. The cable jacket color is not just for good looking. Different color means different fiber mode. Which one suits you the most, the yellow or orange fiber cable? You should know well about the color codes before buying your fiber cables. What’s more, you should also consider the installation requirements and environmental or long-term requirements. Where will be your fiber cables installed, inside or outside the building? Will your cables be exposed to hash environment very long? This can help you decide which jacket material is the best.


As a popular data transmission medium, fiber cable plays an important role in communication field. To some degree, the success of fiber connectivity lies in a right fiber cable. How to buy suitable fiber optic cables? This article describes the method from cable jacket. When selecting fiber cable, many other factors still need to be considered. Hope you can get your own fiber cable.

Advice on Patch Cable Selection for Optical Transceiver

Fiber optic network connection can’t be achieved without optical transceiver and patch cable. Optical transceiver varies from transmission media, interface, transmission distance, data rate, and brand, for example, SFP for 1000Mbps, SFP+ for 10G, QSFP+ for 40G, CFP and QSFP28 for 100G. It’s not difficult to identify these optical transceiver. But when you connect the optical transceiver to the patch cable, many details need to be noticed. This article will give you advice on how to choose the suitable patch cable for your optical transceiver.

Transmission Media—Copper & Fiber

According to transmission media of fiber optic and copper, transceivers can be divided into two kinds, copper based transceivers and fiber optic based transceivers. MSA has defined several copper based transceiver like: 100BASE-T, 1000BASE-T and 10GBASE-T. Copper transceivers are available in GBIC, SFP and SFP+ form factors, which usually has a RJ45 interface. So Cat5/6/7 cables are typically used to connect with the transceivers. Maybe Cat8 will be researched and developed to support higher data rate up to 40G sooner or later.


As to fiber optic transceivers, things are more complex. For that fiber optic transceivers require different fiber patch cords which have more types. Fiber patch cables cover single-mode and multimode. Single-mode patch cable can be classified into OS1 and OS2. While multimode cables can be divided into OM1, OM2, OM3, OM4 cable. Different cables are used in different applications. Single-mode cable can support long distance transmission and multimode cable for short distance link. If the transmission distance is shorter than 500 meters, multimode patch cable is suggested. For long distance transmission, single-mode transmission is suggested. You patch-cableshould also consider that the transmission data rate can also affect the transmission distance. Let’s look at the following point.

Supported Distance and Data Rate

MSA has defined a variety of transceivers that can support different transmission distances and data rates. When you buy a fiber optic transceiver, you will find the data rate, wavelength, distance, etc. on its labeling. The following table show the basic information of most often used transceivers and supported cable type.

Description Wavelengh Data Rate Cable Type Distance
SX 850nm 1G MM 500 m
LX 1310nm 1G SM 8 km
EX 1310nm 1G SM 40 km
ZX 1550nm 1G SM 70 km
SR 850nm 10G MM 300 m
LR 1310nm 10G SM 10 km
ER 1550nm 10G SM 40 km
ZR 1550nm 10G SM 80 km
SR4 850nm 40G MM 100 m
SR10 850nm 100G MM 100 m
LR4 1310nm 40G SM 10 km

As mentioned before, single-mode patch cable is better for long distance transmission and multimode patch cable for short distance transmission. Actually single-mode patch cords can be used for different data rates in both long and short distances. But single-mode fiber optic cable will cost more. To achieve reliable performance in short distances with cost effective solutions, you should know the performance of multimode fiber optic cables. The following chart provides the detailed transmission distances and data rates information for different multimode fiber optic cables over wavelength of 850 nm for your reference.

Fiber Type 1G 10G 40/100G
OM1 300 m 36 m N/A
OM2 500 m 86 m N/A
OM3 1 km 300 m 100 m
OM4 1 km 550 m 150 m
Transceiver Interfaces

The selection of patch cable for transceiver should also consider the interfaces through which patch cords is connected to the transceiver. In addition, transceiver usually used one port for transmitting and one port for receiving. Generally, fiber optic transceivers usually employs duplex SC or LC interfaces. However, for BiDi transceivers only one port is used for both transmitting and receiving. Thus, simplex patch cord is used with BiDi transceiver.

Some 40G/100GBASE QSFP+ transceivers used MTP/MPO interfaces, which should be connected to the network with multi-fiber patch cords attached with MTP/MPO connectors. If these ports are used for 40G to 10G or 100G to 10G connection, then fanout patch cable should be used. For example, a MTP to 8 LC fanout cable can splitter 40G data rate to four 10G data rate.


Next time when you select patch cords for your fiber optic transceivers, you can consider these factors like transmission media, transmission data rate and distance, transceiver interfaces. FS.COM offers a wide range of fiber optic transceivers and patch cords. Custom service is also available. Any problem, please contact us via

What Should We Know About Cabling Before Deploying 10 Gigabit Ethernet?

Since the need for high data speed increases and the price of optical equipment becomes more affordable, many enterprises start to deploy 10 Gigabit Ethernet in their cooperate backbone, data centers to support high-bandwidth applications. But what should we know about cabling before deploying 10 Gigabit Ethernet?

Fiber Cabling Choices

Three factors should be considered for fiber cable deployment: fiber cable type, 10 Gigabit Ethernet physical interface and fiber optical transceiver module. The following tables show the standard fiber cables, physical interfaces, and transceiver modules applicable to 10 Gigabit Ethernet.

Fiber Cables Multimode OM1 fiber (62.5/125 μm)
OM2 fiber (50/125 μm)
OM3 fiber (50/125 μm)
Single mode 9/125 μm fiber
Physical Interfaces 10GBase-LRM Max distance 220m
10GBase-S Max distance 300m
10GBase-L Max distance 10km
10GBase-E Max distance 40km
10GBase-Z Max distance 80km
Transceiver modules XENPACK Large form factor
X2 Smaller than XENPACK
XFP Smaller than X2
SFP+ Smallest form factor

Note: the 10 Gigabit Ethernet physical interface type should be the same on both ends of the fiber link. For example, it is OK to deploy a fiber link with one XFP-10G-MM-SR optics on the left, and one SFP-10G-SR optics on the right. However, one SFP-10G-SR optics and one SFP-10G-LRM optics can’t connect together because of different physical types.

Copper Cabling

As switching standards copper cabling standards develop, copper cabling for 10GbE is more widely used. There are three different copper cabling technologies for 10 Gigabit Ethernet. Each one has different performances and prices.

First, 10GBase-CX4 is the first 10 Gigabit Ethernet copper standard. It’s relatively economical and allows for very low latency. But the form factor is too large for high density port counts in aggregation switches.

Second, Small Form-factor Plus (SFP+) is the latest standard for optical transceivers. 10 Gb SFP+Cu direct attach cables (DAC) directly connect into an SFP+ housing. It’s the best copper solution for servers and storage devices because it has low latency, small form factor and reasonable price.

Third, 10GBase-T is a fully IEEE compliant Ethernet transport technology standard, as defined by IEEE 802.3an-2006. 10GBase-T is to run 10 Gigabit Ethernet over CAT6a and CAT7 copper cabling up to 100 meters. 10GBase-T copper twisted-pair cabling can enable the earlier 10MB, 100MB and 1GB operation. However, 10GBase-T still needs to be improved on its price, power consumption and latency.

Media Copper cable Range (max) Average Latency
CX4 Twinax 15m (49ft) 0.1 μs
SFP+ DAC Twinax SFP+CU 10m (33ft) 0.1 μs
10GBase-T CAT6 RJ45 30m(98ft)—50m (164ft) >1.5 μs
CAT6a RJ45 100m (98ft) >1 μs
CAT7 GG45 100m (98ft) >1 μs
SFP+ Direct Attach Cables

SFP+ direct attach cables integrate SFP+ compatible connectors with a copper cable into a low-latency, energy-efficient, and low-cost solution. SFP+ direct attach cables offer the smallest 10 Gigabit form factor and a small cable diameter for higher density and optimized rack space in 10 Gigabit Ethernet (GbE) uplinks and 10 Gigabit Fiber Channel SAN and NAS input/output connections. To use SFP+ direct attach cables can save you a lot compared with fiber optic solutions. And it can still provide lower latency and save up to 50% power consumption per port than other copper twisted-pair cabling systems.

sfp+ dac

SFP+ direct attach cables can also provide enhanced scalability and flexibility. The cables connect several servers or storage devices together in a single rack. Thus, it reduces the use of intermediate patch panels. And it’s easy to move racks or deploy one rack at a time since the cabling outside of the rack is limited to the main switch connection.

Fiberstore offers comprehensive cabling solutions for 10 Gigabit Ethernet, including fiber cables, copper cables, and SFP+ direct attach cables and each one has various subcategories. Before deploying 10 Gigabit Ethernet, you need to consider factors of the performance, cost, power consumption and latency and choose the most suitable cabling solution.

Which One Will You Choose for Your 40/100G Network, OM3 or OM4?

40G has been widely used in data centers. 100G will also come soon. To meet these high bandwidths, related fiber cables are needed. OM3 and OM4 can be used to transmit parallel optical signal. But what is their difference? Which one will you choose for your network?

Both OM3 and OM4 are laser optimized fiber. Their cores size is 50/125. Connectors are the same and both operate 850nm VCSELS (Vertical-Cavity Surface-Emitting Lasers) transceivers. So the difference lies in the construction of the fiber cable, which means OM4 cable has better attenuation and can operate at higher bandwidth than OM3.


Attenuation is the reduction in power of the light signal as it is transmitted (dB). Attenuation is caused by losses in light through the passive components, such as cables, cable splices, and connectors. As the connectors are the same, so the difference in OM3 and OM4 performance is in the loss (dB) in the cable. The maximum attenuation of OM3 allowed at 850 nm by the standards is less than 3.5 dB/km, and less than3.0 dB/km for OM4.

Another factor influencing the cable function is dispersion. Dispersion is the spreading of the signal in time due to the different paths the light can take down the fiber. It has two types: chromatic and modal. In multimode fiber transmission, chromatic dispersion is negligible and the modal dispersion is the limiting factor.

The modal dispersion determines the modal bandwidth that the fiber can operate at and this is the difference between OM3 and OM4. Modal bandwidth represents the capacity of a fiber to transmit a certain amount of information over a certain distance and is expressed in MHz*km. The higher the modal bandwidth the more information can be transmitted. The modal bandwidth of OM3 is 2700 megahertz*km while the mod0al bandwidth of OM4 is 4700 megahertz*km. Thus, OM4 allows the cable links to be longer.

Compared with OM3, OM4 has a lower attenuation and operates at a higher modal bandwidth. That means over OM4 less power is lost during the signal transmission and the signal can be transmitted further or through more connectors (which add to the losses). The following table shows the Ethernet distances at 850 nm supported by OM3 and OM4 respectively.

1Gb 10Gb 40Gb 100Gb
OM3 1000m 300m 100m 100m
OM4 1000m 500m 150m 150m

So why is the standard for 40G only 100m on OM3 and 150m on OM4 compared to 300m and 500m for 10G? There are two reasons. First, when the IEEE 802 standard was created they decided to create a standard based on “relaxed” transceiver specifications so that smaller and lower cost transceivers could be used. Two functions of 10G transceivers (clock recovery and attendant re-timing) are absent in both QSFP+ (40G) and CFP (100G) devices. Second, the standard allows for transceivers with wider spectral width lasers which increase chromatic dispersion (pulse spreading). The quality of transceivers is also a factor.

Which will you choose for your 40/100G network, OM3 or OM4? Except the transmission distance and the cable costs, there are additional factors to consider such as the number of cross connects required and the mix of 40G port to 40G port and 40G port to 10G port. Because 40G signal is transmitted across eight pairs of fiber each with 10G. Similarly, it is important to take into account the likely location of future 100G equipment and the possible 100G to 100G, 100G to 40G and 100G to 10G connectivity requirement.

What Is Single Mode Fiber?

It is obvious that the fiber-optics are steadily replacing copper wire in telecommunications. The main difference between fiber optic systems and copper wire systems is how they transmit information. Fiber optic cable transmit signals by using light pulses instead of electronic pluses. The light pulses enable fiber optic cable to transmit more data with further distance and fewer signal loss. So fiber optical cables are now widely used for television services, university campuses, office buildings or other long-distance applications. Here will depict one kind of optical fiber: single mode fiber.

Introduction to Single Mode Fiber

Single mode fiber is one kind of fiber which is a single stand of glass fiber deigned to carry light only directly down the transverse mode. Its core diameter is 8.3 to 10 microns. Compared to multimode fiber whose diameter is 50 to 100 microns, single mode fiber has a smaller core, which allows fewer signals to be transmitted simultaneously on a fiber. So the light can only travel on a single path not multimode patch. With only one mode of transmission, single mode fiber has no intermodal dispersion. Multimode fiber transmit signals through multimode paths for its larger core. Those multimode fiber can cause signal distortion at the receiving end in long-distance transmission, making signals unclear and incomplete. In addition, the index of refraction between the core and cladding of single mode changes less than it does for multimode fiber, creating little dispersion.


Conditions for Launching Light to Single Mode Fiber

As one type of optical fiber, single mode fiber carry lights to transmit information. But what should we take care of when launching light into single mode fiber?

Efficiently launching light into a single mode fiber requires the transverse complex amplitude profile of that light at the fiber’s input ends matches that of the guided mode. This means the light source have a high beam quality and a focus at the fiber’s input end and the light should be precisely aligned. A light into a single mode fiber needs well designed mechanical conditions. Taking lasers for example, the laser beam should has the correct size, allowing to precisely align and keep the fixed the focusing lens. It is usually easy to align correctly at the target position, but angular alignment is more critical.

Applications of Single Mode Fiber

Single mode fiber can achieve a high beam quality of the output together with WDM technology and optical amplifiers. In the optical links, single mode fiber can be used to connect different components such as connectors by fusion splicing. Due to little signal dispersion, single mode fiber is widely used for long-distance transmission. Optical media converters are used to do the fiber to fiber conversion to connect two different transmission modes, making single mode fiber efficient in long-distance transmission.

LC-LC Single-mode Fiber Patch Cable

For more information about single mode fiber cable, please visit WWW.FS.COM. Various single mode fiber solutions for you to choose.

Hermetic Carbon-coated Optical Fiber

There are many types of polymer coatings used to protect optical fibers from mechanical damage. However, those common polymer-coated fibers are just used for ordinary applications but not for special applications. The special applications including high-stress applications and adverse environments require optical fibers with improved hermeticity, strength and chemical resistance, etc. So what kind of fibers do we need for special applications?

Hermetic optical fibers are thought to be the ideal solution for the special applications. One type of real hermetic coatings for optical fibers is carbon. Carbon coatings on the surface of optical fiber was developed by AT&T Bell Labs. The thickness of the carbon coating on a 125 μm is usually 50 nm. The coating is so thin that fiber surface cannot avoid being damaged even with the most careful handling. So secondary coating is required. However, due to the thin coating, carbon-coated fibers have no additional optical loss, which makes them are a perfect solution in high-speed networks.

Those kind of carbon-coated optical fibers have three main advantages for its hermetic coatings. The hermetic coatings can protect the fiber surface from water vapor, which reduces static fatigue effects and enhance the fiber mechanical reliability. And they can also defend the fiber surface against mechanical and chemical damage at high temperatures. In addition, those hermetic coatings can stop penetration of hydrogen to the fiber core, making optical networks efficient in hydrogen-containing environment. Here is a picture which shows the attenuation of both hermetic and non-hermetic fibers in a typical operating window for DTS systems. Affected by the hydrogen absorption spectrum, they are of distinct reflections. It is obvious that the optical fiber need to be protected from the hydrogen in diffusion to extend the fiber’s lifetime in a down hole environment.

the-attenuation-of-both-hermetric-and-non-hermetric-fibers-in-a typical-operating-window-for-DTS-systems

hermetric-carbon-coated-fibers-for distributed-temperature-sensingWith above advantages, hermetic carbon-coated fibers can be applied for special applications including high-stress applications (tensile stress, bending stress, torsional stress), adverse environment (water, solvents, high operating temperatures, elevated pressures), etc. For instance, hermetic carbon-coated fibers can be deployed down stainless steel tube during oil well completion for distributed temperature sensing. Those fibers, also called optical sensing fibers, are used as distributed sensors to measure temperature, pressure and flowing information of the wells in harsh conditions. The typical down-hole environments usually are at temperatures up to 300℃ and under pressures up to 30,000 psi, which requires hermetic fibers with high reliability. Hermetic carbon-coated fibers are now popular in chemical and oil industry.

What Are OM1, OM2, OM3 and OM4?

Multimode fiber is a kind of optical cables which is designed to carry multimode light rays or modes concurrently. Those light rays or modes are reflected at slightly different angles within the optical core which is in the standard 125-μm cladding. And due to its modes tend to disperse over long distance, multimode fiber is applied for communications over short distances. Now there are four types of mulimode fibers: OM1, OM2, OM3 and OM4 types which are of different properties. This article will introduce the four types in details.

OM1 Fiber

OM1 fiber has a core size of 62.5µm with an orange jacket which is at the wavelength of 850 nm /1300 nm. It supports 10 Gigabit Ethernet at lengths up 33 meters but is most commonly used for 100 Megabit Ethernet applications. In the 80’s, 90’s and early 2000’s, the 62.5/125µm OM1 fiber was thought to be the most popular multimode fiber choice for it has the lowest data carrying capacity and shortest distance limitations in comparison with other multimode fiber types.

Multimoder FIber Core Diameters

OM2 Fiber

OM2 fiber commonly comes with an orange jacket but has a core size of 50µm instead of 62.5µm. It also typically operates at 850 nm/1300 nm. It supports 10 Gigabit Ethernet at lengths up to 82 meters but is more commonly used for 1 Gigabit Ethernet applications. The 50/125µm OM2 multimode fiber was first invented by Corning in the 1970s and gradually became popular and even the first choice for newly established networks for it supports longer transmission distance and higher bandwidth.

Note: OM1and OM2 fiber are both orange jacket fiber and work well with LED based equipment.

OM3 Fiber

OM3 fiber is 50µm core diameter with aqua jacket. Optimized for lased based equipment which needs fewer mode of light, it is capable of being applied in 10 Gigabit Ethernet at strengths up to 300 meters. The 50/125 µm OM3 fiber is considered to be the best choice for 10 Gigabit Ethernet unless you need the extra distance provided by OM4. Enhancements on its inception and production technologies enable OM3 to be used in 40 Gigabit and 100 Gigabit Ethernet at lengths up to 100 meters.

OM4 Fiber

OM4 fiber has the same core size and jacket color as OM3 fiber. It is also optimized for laser based equipment. As a further development of OM3 fiber, it can support 10 Gigabit Ethernet at lengths up 550 meters and 100G Gigabit Ethernet at lengths up 150 meters. Now as the rapid development of 40G and 100G Gigabit Ethernet, OM4 fiber is widely applied especially in data centers. It provides the most cost effective solutions for data centers by avoiding the higher costs associated with single-mode laser source.OM1 Fiber and OM4 Fiber

For more information, please visit Fiberstore

FTTH Indoor Cable

FTTH has been widely deployed as the high demand for bandwidth of video, audio and data signals transmission. More and more FTTH networks have been and will be installed in subscribers’ houses due to growing requirements for them and enhancements on their technologies. A variety kind of FTTH cables are accordingly designed including in-duct cables, direct-buried cables, drop cables and indoor cables, etc. FTTH indoor cables are mostly difficult to be installed among those cables for the complex indoor environment. Today, this article will introduce FTTH indoor cables in details.

What Is FTTH Indoor Cable?

FTTH indoor cable is used inside a building or house to connect the FTTH user end equipment. Its fiber count typically is 1, 2 or 4 optical strands commonly combined with two non-metal enhanced FRP/Metal/KFRP which can provide sufficient tensile strength and good resistance to lateral crushing to protect the fiber inside. In addition, its outer sheath is universally consist with LSZH material with good flame-retardance in white or black. Its simple convenient structure makes it perfect for indoor cabling.FRP Strength member FTTH indoor cable

Installation of FTTH Indoor Cable

FTTH indoor cable is usually installed along the walls, behind moldings, around corners or through ceilings. The local environment including building styles, existing ducts, owners’ personal requirements and life security control decides the specific operation like the length and bend amplitude of the indoor cable. And nowadays the cables need to have both mechanical strength and flexible installation capacity for smaller subscribers’ houses as the rapid development of FTTH. The bend-optimized cables are prevailing in FTTH indoor installation for its great bend performance around the sharp edges and corners in smaller houses. The following pictures show the installation of FTTH indoor cable.FTTH indoor cable installation

Advantages of FTTH Indoor Cable

Due to its simple structure and installation requirements, FTTH indoor cable is designed to have size and quality advantages over a common indoor fiber. It is small diameter, soft and bendable, easy to deploy and maintenance, allowing a reduction in the physical size of connection equipment such as splice closures and termination boxes. And special FTTH indoor cable is even able to be thunder-proof, anti-rodent or waterproof for life security. With its extraordinary advantages, FTTH indoor cable is widely applied, pushing the development of FTTH as well as guaranteeing people’s life securities as much as possible.

Applications of FTTH Indoor Cable
  • Access network, fiber to the home
  • Used end users directly cabling
  • Indoor cabling and distribution

For more information about FTTH indoor cables, please visit