Author Archives: Serenity Huang

Alternatives of Cisco 24-Port Gigabit PoE+ Managed Switch

In modern offices and homes, it is quite common to see several devices that utilize power over Ethernet (PoE, 802.3af), such as wireless access points, Internet cameras and voice over IP phones. For a midsize office or a relatively large house, it often requires a gigabit PoE switch to power all these devices. And a 24-port gigabit PoE managed switch is popular among most users. But in the past ten years, some devices are designed to use more power than traditional PoE, which demands the newer PoE+ (802.3at) standard that delivers higher power over an Ethernet cable. So 24-port gigabit PoE+ managed switch is used to power them. The Cisco Catalyst 2960S-24PS-L is eligible in every aspect when cost is not a problem. In this post, we’re going to find the 24-port gigabit PoE+ managed switch that can replace this network switch in most situations.

24-port gigabit PoE+ managed switch

Overview on Cisco 24-Port Gigabit PoE+ Managed Switch

Cisco WS-C2960S-24PS-L is the 24-port gigabit PoE+ managed switch model of the Catalyst 2960-S series switches. It is a managed layer 2 switch with 24 Ethernet 10/100/1000 PoE+ ports and 4 gigabit Ethernet SFP ports. Its total available PoE power is 370 Watts, which means it can support up to 24 PoE devices or up to 12 PoE+ devices. (To calculate how many PoE/PoE+ devices the switch supports, simply divide the total PoE Budget by 15.4W/30W.) Its switching bandwidth and forwarding rate are 176 Gbps and 41.7 Mpps respectively. Some other parameters that we will take into consideration are VLAN IDs (4000), maximum VLANs (256) and jumbo frames (9216 bytes). It is a fully managed switch that supports WEB GUI, CLI, Telnet, SNMP (v1, v2, v3).

Cisco 2960S 24-port gigabit poe+ managed switch

Comparison of 24-Port Gigabit PoE+ Managed Switches

Cisco Catalyst 2960s-24PS-L is an excellent 24-port gigabit PoE+ managed switch. Since there are cases when we want to support the same number of PoE/PoE+ devices but do not require a 176Gbps backplane bandwidth, or to cut the budget down as well, we want to find a replacement for this full-managed Cisco 24-port gigabit PoE+ switch. Here are four different 24-port gigabit PoE+ managed switches that have equal numbers of VLAN IDs, maximum VLANs and jumbo frames with Cisco Catalyst 2960s-24PS-L. They are HP 2920-24G-PoE+, Netgear M4100-24G-POE+, Ubiquiti US-24-500W and FS.COM S1600-24T4F. The following table gives some information of them.

Switch Model Cisco WS-C2960S-24PS-L HP 2920-24G-PoE+ Netgear M4100-24G-POE+ Ubiquiti US-24-500W FS S1600-24T4F
Device Type 24-port Gigabit PoE+ managed, Layer 2 24-port Gigabit PoE+ managed, Layer 2+ 24-port Gigabit PoE+ managed, Layer 2+ 24-port Gigabit PoE+ managed, Layer2 24-port Gigabit PoE+ managed, Layer 2+
Ports 24 RJ45 10/100/1000 PoE+ ports, 4 1G SFP ports 24 RJ45 10/100/1000 PoE+ ports, 4 combo ports 24 RJ45 10/100/1000 PoE+ ports, 4 combo ports 24 RJ45 10/100/1000 PoE+ ports, 2 1G SFP ports 24 RJ45 10/100/1000 PoE+ ports, 2 combo ports, 2 1G SFP ports
Switching Capacity 176 Gbps 128 Gbps 48 Gbps 52 Gbps 52 Gbps
Forwarding Rate 41.7 Mpps 95.2 Mpps 35.714 Mpps 38.69 Mpps 38.69 Mpps
PoE Budget 370 W 370 W 380 W 500 W 600 W
Price $1,165.00 $1,139.00 $671.84 $528.79 $419.00

From the table we can see that the 24 RJ45 ports of these five switches are all 802.3af/at compliant. And each switch is designed with 2/4 gigabit fiber uplink ports. The main differences between them are the switching capacity, forwarding rate and PoE budget.

Comparing Cisco WS-C2960S-24PS-L with HP 2920-24G-PoE+, they have similar new device price and identical PoE budget. The HP 24-port gigabit PoE+ managed switch also has a more than 100Gbps switching capacity but much higher forwarding rate than the Cisco 24-port gigabit PoE+ managed switch. They can support the same number of PoE/PoE+ devices.

The Netgear M4100-24G-POE+, Ubiquiti US-24-500W and FS.COM S1600-24T4F have much smaller switch fabrics and slightly lower forwarding rates than the Cisco model. M4100-24G-POE+ supports the same number of PoE/PoE+ devices as Cisco Catalyst 2960S-24PS-L. It’s half the price of the Cisco model. But it has the smallest switch fabric and lowest forwarding rate among the five 24-port gigabit PoE+ managed switches. The Ubiquiti US-24-500W and FS.COM S1600-24T4F have higher PoE budget than the other three switch models. So they can support more PoE/PoE+ devices simultaneously. The prices of the last two switch models are the lowest among them. And the 24-port PoE+ gigabit switch S1600-24T4F has the highest total PoE budget in comparison.

24-port gigabit PoE+ managed switch fs.com S2600-24T4F

Summary

In this article we intend to find some 24-port gigabit PoE+ managed switches that can be used to replace the Cisco Catalyst 2960S-24PS-L in some situations. If you want to replace it with an equivalent 24-port gigabit PoE+ managed switch but with higher forwarding rate, the HP 2920-24G-PoE+ is a suitable choice. If the switching fabric is not a key requirement and there’s need to pare the budget down, have a look at the Netgear M4100-24G-POE+, Ubiquiti US-24-500W and FS.COM S1600-24T4F. Considering the total PoE/PoE+ devices that will be used in the switch, if more than 12 PoE+ devices are to be connected, the Ubiquiti US-24-500W and FS.COM S1600-24T4F are better options.

Related Article: Managed 24 Port PoE Switch: How Can We Benefit From It?

Differentiate the 3 Technologies: Switch Stacking vs Cascading vs Clustering

When we have more than one switches on hand we often seek to a better way in making use of them and managing them. There are mainly three technologies that we might use when we interconnect or combine several Ethernet switches together, which are switch stacking, cascading and clustering. For many people that firstly get in touch with these terms, they can’t figure out the differences between them. Some discussions of the switch stacking versus switch clustering and switch stacking versus switch cascading have been put forward, but a comprehensive comparison between them has not been made. So this post is a discussion of switch stacking vs cascading vs clustering.

switch stacking vs cascading vs clustering

Switch Stacking vs Cascading vs Clustering

The comparison of switch stacking, cascading and clustering should be based on knowing the meaning of these technologies. So firstly we will see what switch stacking, cascading and cluster are.

What Are Switch Stacking, Cascading and Clustering?

Switch stacking is a technology that combines two or more switches together at the backplane typically via a specialized physical cable (stack cable), so they work like a single switch. The group of switches form a “stack”, and it requires a stack master. There’s also virtual stacking, where switches are stacked via Ethernet ports rather than stack cable/module. In such scenario, switch stacking vs cascading seems to be much similar. The port density or the switch capacity of a stack is the sum of the combined switches. For example, when you cascade two 24-port switches, you will get one large 48-port switch when it comes to configuration. And all the switches in the stack share a single IP address for remote administration instead of each stack unit having its own IP address. Only stack switch is able to be stacked together. And it should be noted that, when the switches are stacked, there is no need to connect switches in the group via copper or fiber port besides the stacking ports, because the stack logically is one switch. It is like connecting 2 ports together on the same switch, which can cause loop.

By cascading more than one switch you can have multiple ports interconnecting each of your switches in the group. But they are configured and managed independently. Switches that are cascaded together should all support Spanning Tree Protocol (STP), in order to allow redundancy and to prevent loop. Generally, switches of any models or from any manufacturers can be cascaded. But it does not rule out the cases that two switches can not be cascaded.

A switch cluster is a set of switches connected together, whether through common user port or special ports. One switch plays the role of cluster command switch, and other switches are cluster member switches, which are managed by the command switch. In a switch cluster, only one IP address is needed (on the command switch). Not all switches can be clustered. Only specific cluster-capable switches from the same manufacturer can be clustered. And different manufacturers may use different software for clustering.

Switch Stacking vs Cascading

Where it comes to switch stacking vs cascading, the most obvious difference is that only stackable switches can be stacked while almost all switches can be cascaded. And the stackable switches are generally of the same model or at least belonging to the same manufacturer.

In a switch stack, the port capacity is the combination of all the member switches and the bandwidth is also the sum of all switches. But by cascading switches, the bandwidth will not be increased. There’s even possibility of congestion at the cascade ports if you have only one connection between each switch.

The stack is managed as a whole. When you configure one switch, the change will be duplicated to every other switch in the stack, which is time-saving. However, in a switch cascade, you have to manage and configure every switch separately.

Stacking has a maximum number of stackable switches that you can have in a group. For example, you can connect up to four FS S3800-24F4S or FS S3800-24T4S in a stack. The switch cascading has a limitation on the layers that you can have, which are usually the traditional three layers topology: core, aggregation and access. When the limitation is exceeded, there might be problems of latency and losing packet.

FS S3800-24F4S or FS S3800-24T4S stackable switch

Switch Stacking vs Clustering

Stacking and clustering are very similar in that a stack or a cluster both use only one IP address, and member switches are managed as a whole. So when you want to simplify the management of multiple switches, both stacking and clustering are technologies that can be adopted.

Stacking might be a bit easier to configure since the stack can automatically recognize new stack member, while in a cluster, you have to manually add a device to be the switch cluster. The management of stack members is through a single configuration file. Cluster members have separate, individual configurations files. So the management by a stack master is complete on every stack switch, but the cluster command switch is the point of some management for all cluster members.

The distances between clustered switches can be more flexible. They can be in the same location or they can be located across a Layer 2 or Layer 3. But stacked switches are in the same layer and generally they are located in the same rack. Only virtual stackable switches can be placed in different locations.

Conclusion

After reviewing the discussion of switch stacking vs cascading vs clustering, you may find that the three technologies have the similarity that switches in a stack/cascade/cluster group need to be physically connected. Some are through common Ethernet ports, while some are through special stack ports. Cascading has the minimal requirements on the switch model, while both stacking and clustering require the switches to be stackable/cluster-capable, and are of the same model or at least from a single manufacturer. Stacking and cascading are based on hardware implementation while clustering is based on software implementation. The management of a stack is the most complete of the three.

Related Article: Understanding Two Technologies: Switch Stack vs Switch Cluster

Buy PoE Switch: 48-Port Switch vs 2 24-Port Switches

When we have about 30 PoE and non-PoE mixed connections in our network, the problem of buying a 48-port PoE switch vs. 2 x 24-port PoE switch always puzzles us. If we already have one 24-port PoE switch in use and we’re just adding more ports, we can choose to buy a single 16-24 ports PoE switch or a 16-24 ports Ethernet access switch to connect the increased devices. But as for a newly built network or 30 newly-deployed PoE devices, we have to balance the pros and cons of choosing one 48-port switch vs. 2 24-port switches.

48-Port Switch vs 2 24-Port Switch

PoE Connectivity: 48-Port Switch vs. 2 24-Port Switch Debate

In terms of the cost, usually one 48-port PoE switch will cost more than two 24-port PoE switches of the same model, but it does not mean always. For example, buying the 48-port PoE+ managed switch FS S1600-48T4S is lower than buying two 24-port PoE+ managed switches FS S1600-24T4F. If we have a tight budget and concerns cost saving most, the 1 x 48-port switch vs. 2 24-port switch debate can end here by buying the cheaper choice. Otherwise, we have more factors to consider.

Concerns of Installing 2 x 24 Port PoE Switch

In the options of one 48-port switch vs. 2 24 port switches, if we choose to do the job with two 24-port PoE switches, then we may have to undertake these shortcomings, unless they do not matter in our case. Firstly, two 24-port PoE switches take up more space than a 48-port PoE switch. A fixed-chassis 48-port PoE switch takes up a standard 1 RU space of the rack while 2 x 24-port PoE switch will use more space than that whether it is the 1RU size or smaller. Secondly, if the 2 x 24-port PoE switches are not stacked then we have to do trunk between those two switches, which will eat up ports and give you only 46 ports available. At the same time, it provides an additional potential of bottleneck at the uplink port. Since the internal traffic on a switch is going to be gazillions of times faster than a 1G or even a 10G uplink between switches. But for a 48-port one, it will have fewer issues with bottleneck/congestion. The last concern is that two 24-port PoE switches are harder to manage than one 48-Port PoE switch, even when stacking the two.

Concerns of Installing 1 x 48 Port PoE Switch

When we decided to install only one 48-port switch versus 2 x 24-port switch, there are also some concerns in practice. The biggest issue is that we lose redundancy. If we have only one switch and it fails, we’re chained until we get the replacement, which could be over 24hrs away. But in a two switches’ scenario, if one switch fails at least half of our devices can still be up and running. Another thing we may lose is the separate placing of the 2 x 24-port switches. If we have a single rack to install them, then there’s no issue but if we want to place desktop switch for IP cameras and IP access points in different offices, we may not go with a 48-port PoE switch.

Suggestions for Selection

After the discussion about 48-port switch vs. 2 24-port switches, here are the conclusions we have. In terms of better performance, the 48-port PoE switch is over 2 x 24-port switch. There’s less possibility of creating congestion between the two switches at the uplink ports. For easier management of the devices, it is also suggested to go with one single 48-port PoE switch rather than 2 x 24-ports. All ports on the 48-port PoE switch could communicate between them at wire speed. When we need the redundancy, we’d better go with 2 x 24-port PoE switch. If we want to avoid some problems brought by trunking and separate managing, we can choose stackable PoE switches or modular switch with two 24-port modules, which will provide large backplane and can be managed as a whole.

Ending

The concerns that we discuss in this post are general ones that we may have in choosing one 48-port switch vs. 2 24-port switches for PoE devices. The final decision should depend on our key purpose of buying them. The above factors are several things that we can take into account when we face the similar issue.

Related article: How to Choose a Suitable 48-Port PoE Switch?

Comparison of 48 Port PoE Switch Price and Functionality

When it comes to connecting a lot of VoIP phones and IP cameras, a 48 port PoE switch is great for powering them. Whether it is for home use or business use, a 48 port PoE switch can best solve the problems of installing these PoE network devices in places that have no power lines. If you need to know the application of 48 port PoE switch in access and core area, you could read Deploying 48-Port Gigabit PoE Managed Switch in Different Networks. Due to the high capacity and power supply feature, a 48 port PoE switch price is often higher than a standard 48-port Ethernet switch with no PoE. In this post, we will introduce some cheap 48 port PoE switches and do a comparison between them.

48 port PoE switch for VoIP phone IP camera

Comparison of Four 48 Port PoE Switch Price and Function

The four 48 port PoE switches that we’re going to discuss are UniFi US-48-500W, TP-Link T1600G-52PS, D-Link DGS-1210-52MP/ME and FS S1600-48T4S. They are inexpensive compared with most enterprise class 48 port PoE switches. Let’s have a look at these switches.

Difference Between the Four 48 Port PoE Switches

The table below gives some basic parameters of these four switches, including the port type, supported data rate, the maximum PoE power consumption, switching capacity and forwarding rate.

Switch Model UniFi US-48-500W TP-Link T1600G-52PS D-Link DGS-1210-52MP/ME FS S1600-48T4S
10/100/1000Mbps RJ45 Ports 48 48 48 48
Gigabit SFP Ports 2 4 4 0
SFP+ Ports 2 0 0 4
Max. PoE Power Consumption 500 W 470.4 W 479.5 W 600 W
Max. Power Per Port (PoE+) 30 W 30 W 30 W (ports 1-8) 30 W
Switching Capacity 140 Gbps 104 Gbps 104 Gbps 180 Gbps
Forwarding Rate 104.16 Mpps 77.4 Mpps 77.4 Mpps 130.94 Mpps
Price US$760.00 to US$1,230.90 US$481.99 to US$725.99 US$988.06 to US$1,028.01 US$689.00

The UniFi US-48-500W is a 48-port Layer 2 access switch. In addition to 48 Gigabit RJ45 ports, it has 2 fiber ports of Gigabit SFP and 2 fiber ports of 10G SFP+. It has a non-blocking throughout of 70 Gbps, which is sufficient for typical home use and most small business use. But compared with the other three 48-port PoE switches, it lacks some Layer 3 features. The other three are Layer 2+ switches that support static routing and access resolution protocol (ARP) inspecting, which are simple but efficient approaches in segmenting and securing the network.

Outwardly, the TP-Link T1600G-52PS and D-Link DGS-1210-52MP/ME are similar in many aspects. They both have 4 Gigabit SFP ports and their switch fabric capacity and forwarding rate are identical. However, the 48 RJ45 ports of T1600G-52PS are all IEEE 802.3at/af-compliant PoE+ ports, while the 48 RJ45 ports of DGS-1210-52MP/ME are not. Only ports 1-8 are PoE+ and the ports 9-48 are PoE. The price of T1600G-52PS is much lower than DGS-1210-52PS but the former one is released in 2015 while the latter one is 2017’s new model. Both T1600G-52PS and DGS-121052MP/ME has no 10G ability.

Obviously, the switching capacity (or backplane bandwidth) and forwarding rate of the FS S1600-48T4S are the highest among these four switches. It has four 10G uplink ports, which allows large traffic from the access switch to the core switch and ensures high speed and precise transmission and recording without delay. Meanwhile, it supports the largest power to the device, which is suitable for connecting more PoE network devices. This 48 port PoE switch price is lower than two of the other switches.

48-Port PoE Switch Price

Common Benefits and Features of the Four 48-Port PoE Switches

These four 48 port PoE switch price are much lower than that of high-end PoE switches. They are all managed PoE switches equipped with 48 10/100/1000Mbps Rj45 ports of auto-sensing IEEE 802.3af (PoE), which provides a maximum per PoE port output power to each device of 15.4 W. They also support IEEE 802.3at (PoE+), which enhanced the max. per port power consumption to 30 W. All of them have been equipped with fiber uplink ports.

Another common feature is that these four 48 port PoE switches all support easy management. And the managing function is not limited to only one type. They all have an RJ45 console port or a serial port for managing through web-based graphical user interface (GUI, IPv4/IPv6) or command line interface (CLI).

Summary

This post has compared the 48 port PoE switch price and function. They are generally inexpensive and suitable for both home use and business use. The managing functions are simplified compared with high-end switches, in order to help better management of the network. If you want 10G uplink, UniFi US-48-500W or FS S1600-48T4S are recommended. Before purchasing a 48 port PoE switch, be sure to check the power requirement for your total PoE devices, the standard it complies to and the overall PoE budget of your installation.

Related Article: Deploying 48-Port Gigabit PoE Managed Switch in Different Networks

Affordable 8-12 ports 10G SFP+ Switches for SMB HCA Expansion

Hyper-converged infrastructure (HCI) has been earning a good reputation in data centers, whether it is of the entire branch offices, the IT duties of small and medium businesses (SMBs) or the virtual desktop infrastructure deployments. HCI offers numerous integrated services such as backup, data protection and solid-state drive storage, and allows seamless management and expansion of various compute, storage and network devices, i.e., users can scale the network flexibly by adding a new appliance to the hyper-converged cluster. For SMBs, the requirements for network switches is not the same as large enterprises when adding a 10G appliance. This post is to suggest some affordable 8-12 ports 10G SFP+ switches for SMBs during hyper-converged appliance (HCA) expansion.

10G SFP+ Switches Requirements for SMB HCA Expansion

In today’s SMBs, applications are requiring higher data rate and some management features. For an SMB with a considerable size, the core switches might be required to a fully managed switch with strong capacity, high bandwidth and high port count. The switches for the connectivity of the cluster (compute, storage and network devices) may also have many ports. But when adding a new appliance to the cluster, the switch usually needs not to be high port count or with high data rate. An 8-12 ports 10G SFP+ switch is generally enough for hyper-converged appliance expansion, which is rational considering the expenditure for expansion as well. The following table gives some 8-12 ports 10G SFP+ switches in the market for your reference.

Switch Model Ports Switching Capacity Fowarding Rate Switching Layer Price
Dell X4012 12 x 10G SFP+ 240 Gbps 178.6 Mpps L2+ $1,063.54
Netgear M4300-8X8F 8 x 10G SFP+ and 8 x 10GBASE-T 320 Gbps 238.1 Mpps L3 $1,719.00
Cisco SG500XG-8F8T 8 x 10G SFP+ and 8 x 10GBASE-T 320 Gbps 238.1 Mpps L3 $2,146.59
FS S5800-8TF12S 12 x 10G SFP+ and 8 x 1GBASE-T/SFP Combo 240 Gbps 178.6 Mpps L3 $1,699.00
D-link DXS-1210-12SC 10 x 10G SFP+ and 2 x 10GBASE-T/SFP+ Combo 240 Gbps 178.6 Mpps L3 $1,055.00

12 10G SFP+ FS S5800-8TF12S

According to the information available, these switches can be got online well under $3K in brand new condition. Suppose that an SMB has a core switch which has a fabric capacity of 960 Gbps, and now it needs to add 5 nodes of 10G speed to the cluster for downstream, an 8-12 ports 10G SFP+ switch will not only give enough ports for current nodes and for uplink to the core, but also gives the SMB space to grow.

These switches have some features in common. These common features are very helpful in SMB network managing and ensuring data quality.

Management and Functionality Services

For all the switches mentioned above, some of them are fully managed switches while some are smart managed switches. But all of them are not limited to web interface management. They also support Command Line Interface (CLI), Telnet (multi-session support), SSH and SNMP (simple network management protocol). The most functions that an SMB might need are all equipped, such as VLAN, port mirroring, LACP (link aggregation control protocol) and RMON (remote network control).

QoS and Security Features

The QoS (Quality of Service) features include ARP (Address Resolution Protocol) inspection, ACLs (Access Control Lists), DSCP remark, etc. These features can contribute a lot in securing the SMB network, for example, with the help of ARP inspection and ACLs, the network switch can block fake ARP entries outside the system, so that data frames will not be easily sniffed or modified. Broadcast Storm Control is also supported in order to avoid traffic disorder caused by malicious attack from intruders.

How to Connect These 10G SFP+ Switches?

Although these 8-12 ports 10G SFP+ switches chosen for SMB hyper-converged appliance expansion are relatively low-priced, but the OEM 10G SFP+ fiber transceivers can overburden an SMB if bought in large quantity. Four OEM 10G SFP+ transceivers can cost as much as a 10G SFP+ switch we have found above. Fortunately, there is a way to release the SMBs from expensive OEM optics. That is cost-effective 10G SFP+ compatible modules. So the total cost for the HCA expansion will not exceed $3k either. In addition, most OEM switches support third party transceiver modules and DAC cables from third party transceiver vendors.

Summary

In sum, for SMB hyper-converged appliance expansion, the 10G SFP+ switches used to connect the core switch and the cluster need not to be high port count, but should be equippFed with enough management functions for SMB applications. An 8-12 ports 10G SFP+ switch is good enough.

Related article: 10GbE SFP Switch vs 10GBASE-T Switch: How to Choose?

Things You Should Know About Wireless Access Point

A wireless network access point (WAP or AP) is a hardware device or configured node on a local area network (LAN) that allows wireless capable devices and wired networks to connect through a wireless standard, including Wi-Fi or Bluetooth. A wireless access point acts as a hub of the traditional wired network, and a bridge connecting wired and wireless network. A network access point connects to a wired router, switch, or hub via an Ethernet cable, and projects a Wi-Fi signal to a designated area. Wireless access points may be used to provide network connectivity in office or family environments, covering dozens of meters to hundreds of meters. Most APs use IEEE 802.11 standards.

wireless-routers-function

Types of Network Access Point

Wireless access points can be divided into two types: Simplex AP and Extended AP.

A simplex AP functions as a wireless switch, only transmitting radio signal. When a simplex AP works, it transmits network signal through twisted-pair and converts electrical signal into radio signal after compiling, forming the coverage of Wi-Fi shared Internet access.

An extended AP, commonly known as a wireless router, is mainly applied to Internet access and wireless coverage. Through a wireless router, the share of Internet connection in home Wi-Fi sharing network, as well as wireless shared access of ADSL (Asymmetrical Digital Subscriber Loop) and community broadband can be realized. From security, an network access point is different from a wireless router, in that it does not have firewall functions, and will not protect your local network against threats from the Internet.

Difference Between Network Access Point and Wireless Router

From the appearance, they look almost the same and hard to tell, but they do have subtle differences. A simplex wireless AP usually has a wired RJ45 network port, a power interface, configuration port (USB port or configuration via WEB interface), and fewer indicator lights; while a wireless router has four more cable front-end ports. In addition to a WAN port for connecting higher-up network equipment, four LAN ports can be wired in the internal network, and a router has more indicator lights than AP.

wifi-router-vs-access-point

Functions of Network Access Point

AP plays the important role of relay, which amplifies the wireless signal between two wireless points, and enables remote clients to receive stronger wireless signal. For example, if an AP is put in place A, and there is a client in place C which is 120 meters away from place A, it can be seen that the signal from A to C has been weakened a lot. If an AP is put in place B (60 meters between A and C) as a relay, the signal of client in C will be effectively enhanced, and the transmission speed and stability can be ensured.

wireless network access point function

Another important function of AP is bridging, which is to connect two endpoints and achieve data transmission between two wireless AP. AP is also bridged to connect two wired LANs. For example, there is a wired LAN made up of 15 computers in place A, and wired LAN made up of 25 computers in place B, but the distance between A and B is very far, over 100 meters, and there is no possibility through wired connection, then how to connect the two LANs? AP is needed in both places a and place b to bridge them so that data transmission can be achieved.

The last function is “master-slave mode”, which can achieve one point to multipoint connection. “Master-slave mode” is widely used in the connection between wireless LAN and wired LAN. For example, place A is a wired LAN made up of 20 computers, place B is a wireless LAN made up of 15 computers, and B has a wireless router. If A wants to be connected to B, an AP is needed in A. Initiate the “master-slave mode” and connect AP to the router in A, so that all the computers in A can connect to B.

Summary

Most businesses and homes today rely greatly on the wireless access point (WAP) for data transmission and communication. Wireless access point does make our life more convenient. These devices avoid a mess of wired Ethernet cables like CAT5e, Cat6, etc. Besides, a company, family or school often have to install wired cables through walls and ceilings, while wireless network needs no cables, which contributes great mobility to users.

Related Article: Select Best Ethernet Cable (Cat5/5e/6/6a) for Your Network